Opérateur retardEn l'analyse des séries temporelles, l'opérateur retard, noté L (ou B quelquefois), est l'opérateur qui, à tout élément d'une série temporelle, associe l'observation précédente. Pour un décalage de plusieurs unités, on utilise plusieurs fois de suite cet opérateur, ce que l'on note L élevé à une certaine puissance (l'exposant doit s'entendre au sens de la composition). Ainsi Une généralisation est de décaler non-plus dans le passé mais dans le futur, par un exposant négatif.
Causalité au sens de GrangerLa causalité a été introduite dans l'analyse économétrique par Wiener (1956) et Granger (1969). À l'origine, on retrouve la formalisation de la notion de causalité en physique, notamment dans les travaux d'Isaac Newton sur la force motrice (cause) et le changement de mouvement (effet). Dans ce cas, la notion de causalité traduit un principe d’après lequel si un phénomène est la cause d’un autre phénomène, nommé « effet », alors ce dernier ne peut pas précéder la cause.
Modèle de cointégrationLa cointégration est une propriété statistique des séries temporelles introduite dans l'analyse économique, notamment par Engle et Newbold (1974). En des termes simples, la cointégration permet de détecter la relation de long terme entre deux ou plusieurs séries temporelles. Sa formalisation rigoureuse est due à Granger (1981), et Johansen (1991, 1995). Techniquement, la notion de cointégration implique implicitement celle d'intégration.
EndogénéitéEn économétrie, l'endogénéité se réfère généralement à une situation dans laquelle une des variables explicatives est corrélée avec le terme d'erreur. La distinction entre les variables endogènes et exogènes vient des modèles d'équations simultanées, où on sépare les variables entre celles qui sont déterminées par le modèle et celles qui sont prédéterminées. Ignorer la simultanéité dans l'estimation provoque un biais des estimateurs car cela viole l'hypothèse d'orthogonalité présente dans le théorème de Gauss-Markov.
Moving-average modelIn time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable. Together with the autoregressive (AR) model, the moving-average model is a special case and key component of the more general ARMA and ARIMA models of time series, which have a more complicated stochastic structure.
Processus autorégressifUn processus autorégressif est un modèle de régression pour séries temporelles dans lequel la série est expliquée par ses valeurs passées plutôt que par d'autres variables. Un processus autorégressif d'ordre p, noté AR(p) est donné par : où sont les paramètres du modèle, est une constante et un bruit blanc. En utilisant l'opérateur des retards, on peut l'écrire : Un processus autorégressif d'ordre 1 s'écrit : On peut formuler le processus AR(1) de manière récursive par rapport aux conditions précédentes : En remontant aux valeurs initiales, on aboutit à : Il est à noter que les sommes vont ici jusqu'à l'infini.
Modèles d'équilibre général dynamique stochastiqueUn modèle d'équilibre général dynamique stochastique (en anglais, Dynamic Stochastic General Equilibrium, DSGE) est un modèle économique qui se base sur la théorie de l'équilibre général afin de permettre d'évaluer l'impact macroéconomique d'une politique monétaire ou budgétaire. Le modèle DSGE a été créé par l'école de la nouvelle économie keynésienne sur la base des travaux des modèles de cycles réels (modèles RBC) de Finn E. Kydland et Edward C. Prescott.
GretlGretl (GNU Regression, Econometrics and Time Series Library) est un logiciel de statistiques qui peut être utilisé en ligne de commande ou au travers d'une interface graphique. Outre l'anglais, Gretl est également disponible en grec, chinois, basque, catalan, tchèque, allemand, français, italien, albanais, polonais, portugais, russe, espagnol et turc. Gretl propose son propre format de données basé sur XML (entièrement documenté).
ARMAEn statistique, les modèles ARMA (modèles autorégressifs et moyenne mobile), ou aussi modèle de Box-Jenkins, sont les principaux modèles de séries temporelles. Étant donné une série temporelle , le modèle ARMA est un outil pour comprendre et prédire, éventuellement, les valeurs futures de cette série. Le modèle est composé de deux parties : une part autorégressive (AR) et une part moyenne-mobile (MA). Le modèle est généralement noté ARMA(,), où est l'ordre de la partie AR et l'ordre de la partie MA.
Série temporellethumb|Exemple de visualisation de données montrant une tendances à moyen et long terme au réchauffement, à partir des séries temporelles de températures par pays (ici regroupés par continents, du nord au sud) pour les années 1901 à 2018. Une série temporelle, ou série chronologique, est une suite de valeurs numériques représentant l'évolution d'une quantité spécifique au cours du temps. De telles suites de variables aléatoires peuvent être exprimées mathématiquement afin d'en analyser le comportement, généralement pour comprendre son évolution passée et pour en prévoir le comportement futur.