LogiqueLa logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Gottlob FregeGottlob Frege (), de son nom complet Friedrich Ludwig Gottlob Frege, né le à Wismar et mort le à Bad Kleinen, est un mathématicien, logicien et philosophe allemand, créateur de la logique moderne et plus précisément du calcul propositionnel moderne : le calcul des prédicats. Il est en outre considéré comme l'un des plus importants représentants du logicisme. C'est à la suite de son ouvrage Les Fondements de l'arithmétique, où il tente de dériver l'arithmétique de la logique, que Russell lui a fait parvenir le paradoxe qui porte son nom.
Fondements des mathématiquesLes fondements des mathématiques sont les principes de la philosophie des mathématiques sur lesquels est établie cette science. Le logicisme a été prôné notamment par Gottlob Frege et Bertrand Russell. La mathématique pure présente deux caractéristiques : la généralité de son discours et la déductibilité du discours mathématique . En ce que le discours mathématique ne prétend qu’à une vérité formelle, il est possible de réduire les mathématiques à la logique, les lois logiques étant les lois du « vrai ».
Alfred North WhiteheadAlfred North Whitehead, né le à Ramsgate (dans le Kent, en Angleterre) et mort le à Cambridge (Massachusetts), est un philosophe, logicien et mathématicien britannique. Il est le fondateur de l'école philosophique connue sous le nom de la philosophie du processus, un courant influent dans toute une série de disciplines : l'écologie, la théologie, l'éducation, la physique, la biologie, l'économie et la psychologie. Au début de sa carrière, Whitehead écrit principalement sur les mathématiques, la logique et la physique.
Primitive notionIn mathematics, logic, philosophy, and formal systems, a primitive notion is a concept that is not defined in terms of previously-defined concepts. It is often motivated informally, usually by an appeal to intuition and everyday experience. In an axiomatic theory, relations between primitive notions are restricted by axioms. Some authors refer to the latter as "defining" primitive notions by one or more axioms, but this can be misleading. Formal theories cannot dispense with primitive notions, under pain of infinite regress (per the regress problem).
Système axiomatiqueEn mathématiques, un système axiomatique est un ensemble d'axiomes dont certains ou tous les axiomes peuvent être utilisés logiquement pour dériver des théorèmes. Une théorie consiste en un système axiomatique et tous ses théorèmes dérivés. Un système axiomatique complet est un type particulier de système formel. Une théorie formelle signifie généralement un système axiomatique, par exemple formulé dans la théorie des modèles. Une démonstration formelle est une interprétation complète d'une démonstration mathématique dans un système formel.
Théorèmes d'incomplétude de GödelLes théorèmes d'incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, publiés par Kurt Gödel en 1931 dans son article (« Sur les propositions formellement indécidables des Principia Mathematica et des systèmes apparentés »). Ils ont marqué un tournant dans l'histoire de la logique en apportant une réponse négative à la question de la démonstration de la cohérence des mathématiques posée plus de 20 ans auparavant par le programme de Hilbert.
Bertrand RussellInfobox Philosophe | nom = Bertrand Russell | image = Bertrand Russell cropped.jpg | légende = Bertrand Russell en novembre 1957. | alt = Photographie en noir et blanc d'un homme aux cheveux blancs, mains jointes sur ses lunettes, observant le spectateur d'un air amusé | date de naissance = 18 mai 1872 | lieu de naissance = Trellech (Monmouthshire, Royaume-Uni) | date de décès = 2 février 1970 | lieu de décès = Penrhyndeudraeth (Gwynedd, Royaume-Uni) | tradition philosophique = Philosophie analytique | principaux intérêts = Logique, mathématiques, physique, éthique, religion, politique | œuvres principales = Principia Mathematica,De la dénotation | a influencé = Ludwig Wittgenstein, A.
Philosophie des mathématiquesLa philosophie des mathématiques est la branche de la philosophie des sciences qui tente de répondre aux interrogations sur les fondements des mathématiques ainsi que sur leur usage. On y croise des questions telles que : « les mathématiques sont-elles nécessaires ? », « pourquoi les mathématiques sont-elles utiles ou efficaces pour décrire la nature ? », « dans quel(s) sens, peut-on dire que les entités mathématiques existent ? » ou « pourquoi et comment peut-on dire qu'une proposition mathématique est vraie ? ».