Teiji TakagiTeiji Takagi (高木 貞治 Takagi Teiji) né le près de Gifu et mort le à Tokyo, est un mathématicien japonais, connu pour avoir prouvé le théorème d'existence de Takagi en théorie des corps de classes. Il est né dans la région montagneuse et rurale du Gifu, au Japon. Il a commencé à étudier les mathématiques en middle school (qui correspond au collège en France), en lisant des textes en anglais vu qu'il n'y en avait aucun en japonais.
Corps de nombresEn mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Extension abélienneEn algèbre générale, plus précisément en théorie de Galois, une extension abélienne est une extension de Galois dont le groupe de Galois est abélien. Lorsque ce groupe est cyclique, l'extension est dite cyclique. Toute extension finie d'un corps fini est une extension cyclique. L'étude de la théorie des corps de classes décrit de façon détaillée toutes les extensions abéliennes dans le cas des corps de nombres, et des corps de fonctions de courbes algébriques sur des corps finis, ainsi que dans le cas des corps locaux (Théorie du corps de classes local).
Programme de LanglandsEn mathématiques, le programme de Langlands est encore, au début du , un domaine de recherche actif et fertile en conjectures. Ce programme souhaite relier la théorie des nombres aux représentations de certains groupes. Il a été proposé par Robert Langlands en 1967. La première étape du programme, réalisée bien avant les travaux de Langlands, peut être vue comme la théorie des corps de classes.
Idéal principalEn mathématiques, plus particulièrement dans la théorie des anneaux, un idéal principal est un idéal engendré par un seul élément. Soit A un anneau. Un idéal à droite I est dit principal à droite s'il est égal à l'idéal à droite engendré par un élément a, c'est-à-dire si I = aA := { ax | x ∈ A }. Un idéal à gauche I est dit principal à gauche s'il est égal à l'idéal à gauche engendré par un élément a, c'est-à-dire si I = Aa := { xa | x ∈ A }.
Groupe des classes d'idéauxEn mathématiques, et plus précisément en algèbre, la théorie des corps de nombres – les extensions finies du corps Q des rationnels – fait apparaître un groupe abélien fini construit à partir de chacun de ces corps : son groupe des classes d'idéaux. Les premiers groupes de classes rencontrés en algèbre furent des groupes de classes de formes quadratiques : dans le cas des formes quadratiques binaires, dont l'étude a été faite par Gauss, une loi de composition est définie sur certaines classes d'équivalence de formes.
Adelic algebraic groupIn abstract algebra, an adelic algebraic group is a semitopological group defined by an algebraic group G over a number field K, and the adele ring A = A(K) of K. It consists of the points of G having values in A; the definition of the appropriate topology is straightforward only in case G is a linear algebraic group. In the case of G being an abelian variety, it presents a technical obstacle, though it is known that the concept is potentially useful in connection with Tamagawa numbers.
Emil ArtinEmil Artin ( à Vienne, à Hambourg) est un mathématicien autrichien. Il fait carrière en Allemagne (principalement à Hambourg) et émigre aux États-Unis en 1937. Il fait partie des mathématiciens qui ont donné sa forme moderne à la théorie de Galois. Il est également un des fondateurs de la théorie des tresses. Il a résolu les neuvième et dix-septième problèmes de Hilbert. Il a encadré plus de trente thèses, dont celles de Bernard Dwork, , Serge Lang, John Tate, Hans Julius Zassenhaus, O. Timothy O'Meara et Max Zorn.
Corps de classes de HilbertEn théorie algébrique des nombres, le corps de Hilbert H(K) d'un corps de nombres algébriques K est l'extension abélienne non ramifiée maximale de ce corps de nombres. Cet objet doit son nom au mathématicien allemand David Hilbert. Son étude est à la fois une étape importante, et un archétype, pour la théorie des corps de classes : via l'isomorphisme de réciprocité (symbole d'Artin) de la correspondance du corps de classes, le groupe de Galois Gal(H(K)/K) est isomorphe au groupe des classes du corps K.
Extension cyclotomiqueEn théorie algébrique des nombres, on appelle extension cyclotomique du corps Q des nombres rationnels tout corps de rupture d'un polynôme cyclotomique, c'est-à-dire tout corps de la forme Q(ζ) où ζ est une racine de l'unité. Ces corps jouent un rôle crucial, d'une part dans la compréhension de certaines équations diophantiennes : par exemple, l'arithmétique (groupe des classes, notamment) de leur anneau des entiers permet de montrer le dernier théorème de Fermat dans de nombreux cas (voir nombre premier régulier) ; mais aussi, dans la compréhension des extensions algébriques de Q, ce qui peut être considéré comme une version abstraite du problème précédent : le théorème de Kronecker-Weber, par exemple, assure que toute extension abélienne est contenue dans une extension cyclotomique.