Concepts associés (36)
Regular matroid
In mathematics, a regular matroid is a matroid that can be represented over all fields. A matroid is defined to be a family of subsets of a finite set, satisfying certain axioms. The sets in the family are called "independent sets". One of the ways of constructing a matroid is to select a finite set of vectors in a vector space, and to define a subset of the vectors to be independent in the matroid when it is linearly independent in the vector space.
Vámos matroid
In mathematics, the Vámos matroid or Vámos cube is a matroid over a set of eight elements that cannot be represented as a matrix over any field. It is named after English mathematician Peter Vámos, who first described it in an unpublished manuscript in 1968. The Vámos matroid has eight elements, which may be thought of as the eight vertices of a cube or cuboid. The matroid has rank 4: all sets of three or fewer elements are independent, and 65 of the 70 possible sets of four elements are also independent.
Polynôme de Tutte
Le polynôme de Tutte, aussi appelé polynôme dichromatique ou polynôme de Tutte–Whitney, est un polynôme invariant de graphes dont les valeurs expriment des propriétés d'un graphe. C'est un polynôme en deux variables qui joue un rôle important en théorie des graphes et en combinatoire. Il est défini pour tout graphe non orienté et contient des informations liées à ses propriétés de connexité. L'importance de ce polynôme provient des informations qu'il contient sur le graphe .
Greedoid
In combinatorics, a greedoid is a type of set system. It arises from the notion of the matroid, which was originally introduced by Whitney in 1935 to study planar graphs and was later used by Edmonds to characterize a class of optimization problems that can be solved by greedy algorithms. Around 1980, Korte and Lovász introduced the greedoid to further generalize this characterization of greedy algorithms; hence the name greedoid. Besides mathematical optimization, greedoids have also been connected to graph theory, language theory, order theory, and other areas of mathematics.
Enveloppe convexe
L'enveloppe convexe d'un objet ou d'un regroupement d'objets géométriques est l'ensemble convexe le plus petit parmi ceux qui le contiennent. Dans un plan, l'enveloppe convexe peut être comparée à la région limitée par un élastique qui englobe tous les points qu'on relâche jusqu'à ce qu'il se contracte au maximum. L'idée serait la même dans l'espace avec un ballon qui se dégonflerait jusqu'à être en contact avec tous les points qui sont à la surface de l'enveloppe convexe.
Géométrie discrète
La géométrie discrète est une branche de la géométrie. On parle de géométrie discrète pour la distinguer de la géométrie « continue ». Tout comme cette dernière, elle peut être analytique, les objets sont dans ce cas décrits par des inéquations. Un exemple simple : la géométrie continue en deux dimensions permet de définir des droites, des cercles dans un plan. Ces objets sont des ensembles de points qui sont des couples de nombres réels.
Maille (théorie des graphes)
En théorie des graphes, la maille d'un graphe est la longueur du plus court de ses cycles. Un graphe acyclique est généralement considéré comme ayant une maille infinie (ou, pour certains auteurs, une maille de −1). La maille d'un graphe est la longueur du plus court de ses cycles. Image:Petersen graph blue.svg|Le [[graphe de Petersen]] a une maille de 5 et est une cage. Image:Heawood_Graph.svg|Le [[graphe de Heawood]] a une maille de 6 et est une cage. Image:Frucht_graph.neato.
Circuit rank
In graph theory, a branch of mathematics, the circuit rank, cyclomatic number, cycle rank, or nullity of an undirected graph is the minimum number of edges that must be removed from the graph to break all its cycles, making it into a tree or forest. It is equal to the number of independent cycles in the graph (the size of a cycle basis). Unlike the corresponding feedback arc set problem for directed graphs, the circuit rank r is easily computed using the formula where m is the number of edges in the given graph, n is the number of vertices, and c is the number of connected components.
Oriented matroid
An oriented matroid is a mathematical structure that abstracts the properties of directed graphs, vector arrangements over ordered fields, and hyperplane arrangements over ordered fields. In comparison, an ordinary (i.e., non-oriented) matroid abstracts the dependence properties that are common both to graphs, which are not necessarily directed, and to arrangements of vectors over fields, which are not necessarily ordered. All oriented matroids have an underlying matroid.
Fonction sous-modulaire
En optimisation combinatoire, les fonctions sous-modulaires sont des fonctions d'ensemble particulières. Soient E un ensemble et f une fonction qui à tout sous-ensemble X de E associe un réel f(X), on dit que f est sous-modulaire si l'inégalité suivante est vérifiée pour tout sous-ensemble X et Y de E Les fonctions sous-modulaire peuvent être vues comme l'analogue discret des fonctions convexes.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.