Partition d'un ensemblevignette|Les 52 partitions d'un ensemble à 5 éléments. Les points noirs représentent les éléments de l'ensemble. Une région colorée correspond à un bloc de la partition qui regroupe plusieurs points noirs. Un point noir isolé signifie que cet élément appartient à un bloc qui est un singleton. En mathématiques, une partition d'un ensemble X est un ensemble de parties non vides de X deux à deux disjointes et dont l'union est X. Soit un ensemble X.
AntimatroidIn mathematics, an antimatroid is a formal system that describes processes in which a set is built up by including elements one at a time, and in which an element, once available for inclusion, remains available until it is included. Antimatroids are commonly axiomatized in two equivalent ways, either as a set system modeling the possible states of such a process, or as a formal language modeling the different sequences in which elements may be included.
Geometric latticeIn the mathematics of matroids and lattices, a geometric lattice is a finite atomistic semimodular lattice, and a matroid lattice is an atomistic semimodular lattice without the assumption of finiteness. Geometric lattices and matroid lattices, respectively, form the lattices of flats of finite, or finite and infinite, matroids, and every geometric or matroid lattice comes from a matroid in this way. A lattice is a poset in which any two elements and have both a least upper bound, called the join or supremum, denoted by , and a greatest lower bound, called the meet or infimum, denoted by .
Biased graphIn mathematics, a biased graph is a graph with a list of distinguished circles (edge sets of simple cycles), such that if two circles in the list are contained in a theta graph, then the third circle of the theta graph is also in the list. A biased graph is a generalization of the combinatorial essentials of a gain graph and in particular of a signed graph. Formally, a biased graph Ω is a pair (G, B) where B is a linear class of circles; this by definition is a class of circles that satisfies the theta-graph property mentioned above.
Transcendental extensionIn mathematics, a transcendental extension is a field extension such that there exists an element in the field that is transcendental over the field ; that is, an element that is not a root of any univariate polynomial with coefficients in . In other words, a transcendental extension is a field extension that is not algebraic. For example, are both transcendental extensions of A transcendence basis of a field extension (or a transcendence basis of over ) is a maximal algebraically independent subset of over Transcendence bases share many properties with bases of vector spaces.
Gain graphA gain graph is a graph whose edges are labelled "invertibly", or "orientably", by elements of a group G. This means that, if an edge e in one direction has label g (a group element), then in the other direction it has label g −1. The label function φ therefore has the property that it is defined differently, but not independently, on the two different orientations, or directions, of an edge e. The group G is called the gain group, φ is the gain function, and the value φ(e) is the gain of e (in some indicated direction).
Abstract simplicial complexIn combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles (sets of size 3), their edges (sets of size 2), and their vertices (sets of size 1).
Transversal (combinatorics)In mathematics, particularly in combinatorics, given a family of sets, here called a collection C, a transversal (also called a cross-section) is a set containing exactly one element from each member of the collection. When the sets of the collection are mutually disjoint, each element of the transversal corresponds to exactly one member of C (the set it is a member of). If the original sets are not disjoint, there are two possibilities for the definition of a transversal: One variation is that there is a bijection f from the transversal to C such that x is an element of f(x) for each x in the transversal.
Polynôme chromatiqueEn mathématiques, plus particulièrement en théorie des graphes, le polynôme chromatique d'un graphe est une fonction polynômiale donnant le nombre de colorations distinctes d'un graphe, en fonction du nombre de couleurs autorisées. Il a été introduit d'abord en 1912 pour les graphes planaires, par George David Birkhoff, qui cherchait à démontrer le théorème des quatre couleurs. Ce polynôme a pour racines tous les entiers positifs ou nuls strictement inférieurs au nombre chromatique du graphe et a pour degré l'ordre du graphe.
László LovászLászló Lovász (né le à Budapest) est un mathématicien hongrois connu pour ses travaux en combinatoire, notamment en théorie des graphes, et informatique théorique et président de l'Académie hongroise des sciences depuis 2014. Il est lauréat du prix Abel 2021. Titulaire d'un doctorat de l'université Loránd Eötvös à Budapest en 1971, il entame une carrière nationale d'enseignant-chercheur. Il occupe ensuite un poste de professeur à l'université Yale de 1993 à 2000, puis collabore en qualité de chercheur au Microsoft Research Center jusqu'en 2006.