Lemme de normalisation de NoetherEn algèbre commutative, le lemme de normalisation de Noether, dû à la mathématicienne allemande Emmy Noether, donne une description des algèbres de type fini sur un corps. On fixe une algèbre commutative de type fini A sur un corps (commutatif) K. Lemme de normalisation de Noether : L'algèbre contient et est finie sur un sous-anneau de polynômes . De façon équivalente : Il existe un entier positif ou nul d et un homomorphisme fini injectif de K-algèbres Autrement dit, il existe tels que tout élément a de A s'écrit comme une combinaison avec des polynômes dépendants de a.
Function field of an algebraic varietyIn algebraic geometry, the function field of an algebraic variety V consists of objects which are interpreted as rational functions on V. In classical algebraic geometry they are ratios of polynomials; in complex algebraic geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions. In complex algebraic geometry the objects of study are complex analytic varieties, on which we have a local notion of complex analysis, through which we may define meromorphic functions.
Minimal model programIn algebraic geometry, the minimal model program is part of the birational classification of algebraic varieties. Its goal is to construct a birational model of any complex projective variety which is as simple as possible. The subject has its origins in the classical birational geometry of surfaces studied by the Italian school, and is currently an active research area within algebraic geometry. The basic idea of the theory is to simplify the birational classification of varieties by finding, in each birational equivalence class, a variety which is "as simple as possible".
Normal schemeIn algebraic geometry, an algebraic variety or scheme X is normal if it is normal at every point, meaning that the local ring at the point is an integrally closed domain. An affine variety X (understood to be irreducible) is normal if and only if the ring O(X) of regular functions on X is an integrally closed domain. A variety X over a field is normal if and only if every finite birational morphism from any variety Y to X is an isomorphism. Normal varieties were introduced by .
Variété rationnelleEn géométrie algébrique, une variété rationnelle est une variété algébrique (intègre) V sur un corps K qui est birationnelle à un espace projectif sur K, c'est-à-dire qu'un certain ouvert dense de V est isomorphe à un ouvert d'un espace projectif. De façon équivalente, cela signifie que son corps de fonctions est isomorphe au corps des fractions rationnelles à d indéterminées K(U, ... , U), l'entier d étant alors égal à la dimension de la variété. Soit V une variété algébrique affine de dimension d définie par un idéal premier ⟨f, .
Variété algébrique affineEn géométrie algébrique, une variété affine est un modèle local pour les variétés algébriques, c'est-à-dire que celles-ci sont obtenues par recollement de variétés affines. Grossièrement, une variété affine est un ensemble algébrique affine X avec une structure algébrique supplémentaire qui est la donnée de l'anneau des fonctions régulières sur chaque partie ouverte de X. Ensemble algébrique Le point de vue le plus simple pour décrire une variété algébrique affine est l'ensemble des solutions d'un système d'équations polynomiales à coefficients dans un corps commutatif K.
Étale morphismIn algebraic geometry, an étale morphism (etal) is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.
Smooth morphismIn algebraic geometry, a morphism between schemes is said to be smooth if (i) it is locally of finite presentation (ii) it is flat, and (iii) for every geometric point the fiber is regular. (iii) means that each geometric fiber of f is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If S is the spectrum of an algebraically closed field and f is of finite type, then one recovers the definition of a nonsingular variety.
Corps de fonctionsEn mathématiques, un corps de fonctions est un corps commutatif F de type fini sur un corps de base K. On le note habituellement F/K, ou, si le contexte est clair, seulement F. De façon équivalente un corps de fonctions « à n variables » est une extension finie F d'un corps K(t, ... , t) de fractions rationnelles à n indéterminées. F est alors de degré de transcendance n sur K. Une extension L de k est un corps de fonctions (à n variables) si et seulement si c'est le d'une variété algébrique intègre sur k (de dimension n).
Smooth schemeIn algebraic geometry, a smooth scheme over a field is a scheme which is well approximated by affine space near any point. Smoothness is one way of making precise the notion of a scheme with no singular points. A special case is the notion of a smooth variety over a field. Smooth schemes play the role in algebraic geometry of manifolds in topology. First, let X be an affine scheme of finite type over a field k. Equivalently, X has a closed immersion into affine space An over k for some natural number n.