Localisation d'une catégorieEn mathématiques, et plus précisément en théorie des catégories, la localisation de catégorie est une construction algébrique permettant d'inverser une certaine classe de morphismes. Elle a notamment des applications en topologie algébrique et en géométrie algébrique. Pour une catégorie et une classe de morphismes , la localisation de par rapport à est la catégorie universelle où tous les morphismes de sont inversibles.
Equations defining abelian varietiesIn mathematics, the concept of abelian variety is the higher-dimensional generalization of the elliptic curve. The equations defining abelian varieties are a topic of study because every abelian variety is a projective variety. In dimension d ≥ 2, however, it is no longer as straightforward to discuss such equations. There is a large classical literature on this question, which in a reformulation is, for complex algebraic geometry, a question of describing relations between theta functions.
Smooth morphismIn algebraic geometry, a morphism between schemes is said to be smooth if (i) it is locally of finite presentation (ii) it is flat, and (iii) for every geometric point the fiber is regular. (iii) means that each geometric fiber of f is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If S is the spectrum of an algebraically closed field and f is of finite type, then one recovers the definition of a nonsingular variety.
Moduli of algebraic curvesIn algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending on the restrictions applied to the classes of algebraic curves considered, the corresponding moduli problem and the moduli space is different. One also distinguishes between fine and coarse moduli spaces for the same moduli problem.
Théorème de modularitéLe théorème de modularité (auparavant appelé conjecture de Taniyama-Weil ou conjecture de Shimura-Taniyama-Weil ou conjecture de Shimura-Taniyama) énonce que, pour toute courbe elliptique sur Q, il existe une forme modulaire de poids 2 pour un Γ(N), ayant même fonction L que la courbe elliptique. Une grande partie de ce résultat, suffisante pour en déduire le dernier théorème de Fermat, a été démontrée par Andrew Wiles. S'inspirant de ses techniques, Christophe Breuil, Brian Conrad, Fred Diamond et Richard Taylor ont traité les cas restants en 1999.
Torelli theoremIn mathematics, the Torelli theorem, named after Ruggiero Torelli, is a classical result of algebraic geometry over the complex number field, stating that a non-singular projective algebraic curve (compact Riemann surface) C is determined by its Jacobian variety J(C), when the latter is given in the form of a principally polarized abelian variety. In other words, the complex torus J(C), with certain 'markings', is enough to recover C. The same statement holds over any algebraically closed field.
Restriction de WeilEn géométrie algébrique, la restriction de Weil est un -schéma, issu d'un -schéma et d'un morphisme de schémas . On s'intéresse souvent au cas où est une extension finie . La restriction porte le nom d'André Weil. est la catégorie duale de la catégorie des -schémas. Soit un morphisme de schémas. Pour un -schéma considérons le foncteur contravariant Si le foncteur est représentable, alors le -schéma correspondant est appelé la restriction de Weil de par rapport à , qui peut aussi être noté par . Catégorie:G
Height functionA height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers. For instance, the classical or naive height over the rational numbers is typically defined to be the maximum of the numerators and denominators of the coordinates (e.g.
Multiplication complexeEn mathématiques, une courbe elliptique est à multiplication complexe si l'anneau de ses endomorphismes est plus grand que celui des entiers (il existe une théorie plus générale de la multiplication complexe pour les variétés abéliennes de dimension supérieure). Cette notion est liée au douzième problème de Hilbert. Un exemple de courbe elliptique avec multiplication complexe est C/Z[i]θ où Z[i] est l'anneau des entiers de Gauss, et θ est n'importe quel nombre complexe différent de zéro.
Diophantine geometryIn mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations. Diophantine geometry is part of the broader field of arithmetic geometry. Four theorems in Diophantine geometry which are of fundamental importance include: Mordell–Weil theorem Roth's theorem Siegel's theorem Faltings's theorem Serge Lang published a book Diophantine Geometry in the area in 1962, and by this book he coined the term "Diophantine Geometry".