Concepts associés (19)
Test F
En statistique, un test F est un terme générique désignant tout test statistique dans lequel la statistique de test suit la loi de Fisher sous l'hypothèse nulle. Ce type de tests est souvent utilisé lors de la comparaison de modèles statistiques qui ont été ajustés sur un ensemble de données, afin d'identifier le modèle qui correspond le mieux à la population à partir de laquelle les données ont été échantillonnées. Les tests F dits "exacts" sont ceux pour lesquels les modèles ont été ajustés aux données par la méthode des moindres carrés.
Model selection
Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. In the context of learning, this may be the selection of a statistical model from a set of candidate models, given data. In the simplest cases, a pre-existing set of data is considered. However, the task can also involve the design of experiments such that the data collected is well-suited to the problem of model selection.
G-test
In statistics, G-tests are likelihood-ratio or maximum likelihood statistical significance tests that are increasingly being used in situations where chi-squared tests were previously recommended. The general formula for G is where is the observed count in a cell, is the expected count under the null hypothesis, denotes the natural logarithm, and the sum is taken over all non-empty cells. Furthermore, the total observed count should be equal to the total expected count:where is the total number of observations.
Test du χ²
En statistique, le test du khi carré, aussi dit du khi-deux, d’après sa désignation symbolique , est un test statistique où la statistique de test suit une loi du sous l'hypothèse nulle. Par exemple, il permet de tester l'adéquation d'une série de données à une famille de lois de probabilité ou de tester l'indépendance entre deux variables aléatoires. Ce test a été proposé par le statisticien Karl Pearson en 1900.
Test du rapport de vraisemblance
En statistiques, le test du rapport de vraisemblance est un test statistique qui permet de tester un modèle paramétrique contraint contre un non contraint. Si on appelle le vecteur des paramètres estimés par la méthode du maximum de vraisemblance, on considère un test du type : contre On définit alors l'estimateur du maximum de vraisemblance et l'estimateur du maximum de vraisemblance sous .
Coefficient de détermination
vignette|Illustration du coefficient de détermination pour une régression linéaire. Le coefficient de détermination est égal à 1 moins le rapport entre la surface des carrés bleus et la surface des carrés rouges. En statistique, le coefficient de détermination linéaire de Pearson, noté R ou r, est une mesure de la qualité de la prédiction d'une régression linéaire. où n est le nombre de mesures, la valeur de la mesure , la valeur prédite correspondante et la moyenne des mesures.
Critère d'information d'Akaike
Le critère d'information d'Akaike, (en anglais Akaike information criterion ou AIC) est une mesure de la qualité d'un modèle statistique proposée par Hirotugu Akaike en 1973. Lorsque l'on estime un modèle statistique, il est possible d'augmenter la vraisemblance du modèle en ajoutant un paramètre. Le critère d'information d'Akaike, tout comme le critère d'information bayésien, permet de pénaliser les modèles en fonction du nombre de paramètres afin de satisfaire le critère de parcimonie.
Hétéroscédasticité
En statistique, l'on parle d'hétéroscédasticité lorsque les variances des résidus des variables examinées sont différentes. Le mot provient du grec, composé du préfixe hétéro- (« autre »), et de skedasê (« dissipation»). Une collection de variables aléatoires est hétéroscédastique s'il y a des sous-populations qui ont des variabilités différentes des autres. La notion d'hétéroscédasticité s'oppose à celle d'homoscédasticité. Dans le second cas, la variance de l'erreur des variables est constante i.e. .
Validation croisée
La validation croisée () est, en apprentissage automatique, une méthode d’estimation de fiabilité d’un modèle fondée sur une technique d’échantillonnage. Supposons posséder un modèle statistique avec un ou plusieurs paramètres inconnus, et un ensemble de données d'apprentissage sur lequel on peut apprendre (ou « entraîner ») le modèle. Le processus d'apprentissage optimise les paramètres du modèle afin que celui-ci corresponde le mieux possible aux données d'apprentissage.
Test du χ² de Pearson
En statistique, le test du χ2 de Pearson ou test du χ2 d'indépendance est un test statistique qui s'applique sur des données catégorielles pour évaluer la probabilité de retrouver la différence de répartition observée entre les catégories si celles-ci étaient indépendantes dans le processus de répartition sous-jacent. Il convient aux données non-appariées prises sur de grands échantillons (n>30). Il est le test du χ2 le plus communément utilisé (comparativement aux autres tests du χ2 tels que le test du χ2 de Yates, le test du rapport de vraisemblance ou le test du porte-manteau.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.