Explore les tests de spécification, l'apprentissage automatique, le surajustement, la régularisation, les tests de prédiction et la sélection de variables.
Explore les fondamentaux de la régression linéaire, les problèmes de régression non linéaire et la bonté de l'ajustement au carré R, avec des exemples tels que le quatuor d'Anscombe et l'ensemble de données Datasaurus.
Couvre les intervalles de confiance, les tests d'hypothèse, les erreurs standard, les modèles statistiques, la probabilité, l'inférence bayésienne, la courbe ROC, la statistique Pearson, la bonté des tests d'ajustement et la puissance des tests.
Explore l'application de Maximum Likelihood Estimation dans les modèles à choix binaire, couvrant les modèles probit et logit, la représentation des variables latentes et les tests de spécification.
Explore la théorie de la décomposition de la valeur singulière, les solutions de systèmes linéaires, les moindres carrés et les concepts d'ajustement des données.