Ddbar lemmaIn complex geometry, the lemma (pronounced ddbar lemma) is a mathematical lemma about the de Rham cohomology class of a complex differential form. The -lemma is a result of Hodge theory and the Kähler identities on a compact Kähler manifold. Sometimes it is also known as the -lemma, due to the use of a related operator , with the relation between the two operators being and so .
Théorie de HodgeLa théorie de Hodge est l'étude, avec l'apport notamment de la topologie algébrique, des formes différentielles sur une variété lisse. En conséquence elle éclaire l'étude des variétés riemanniennes et kählériennes, ainsi que l'étude géométrique des motifs. Elle tient son nom du mathématicien écossais William Hodge. Un des problèmes du prix du millénaire a trait à cette théorie : la conjecture de Hodge.
Hermitian manifoldIn mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a real manifold with a Riemannian metric that preserves a complex structure. A complex structure is essentially an almost complex structure with an integrability condition, and this condition yields a unitary structure (U(n) structure) on the manifold.
Cohomologie de DolbeaultEn géométrie complexe et en géométrie différentielle, la cohomologie de Dolbeault est une généralisation simplifiée aux variétés complexes de la cohomologie de De Rham. Pour un fibré vectoriel holomorphe sur une variété complexe , les formes différentielles sur à valeurs dans se définissent comme les sections du fibré . Parmi ces formes différentielles se distinguent celles qui sont localement somme du produit extérieur de formes linéaires et de formes antilinéaires, dites de bidegré .
Structure presque complexeEn géométrie différentielle, une structure presque complexe sur une variété différentielle réelle est la donnée d'une structure d'espace vectoriel complexe sur chaque espace tangent. Une structure presque complexe J sur une variété différentielle M est un champ d'endomorphismes J, c'est-à-dire une section globale du fibré vectoriel , vérifiant : Une variété différentielle munie d'une structure presque complexe est appelée une variété presque complexe.
Variété kählérienneEn mathématiques, une variété kählérienne ou variété de Kähler est une variété différentielle équipée d'une structure unitaire satisfaisant une condition d'intégrabilité. C'est en particulier une variété riemannienne, une variété symplectique et une variété complexe, ces trois structures étant mutuellement compatibles. Les variétés kählériennes sont un objet d'étude naturel en géométrie différentielle complexe. Elles doivent leur nom au mathématicien Erich Kähler. Plusieurs définitions équivalentes existent.
Cohomologie de De RhamEn mathématiques, la cohomologie de De Rham est un outil de topologie différentielle, c'est-à-dire adapté à l'étude des variétés différentielles. Il s'agit d'une théorie cohomologique fondée sur des propriétés algébriques des espaces de formes différentielles sur la variété. Elle porte le nom du mathématicien Georges de Rham. Le affirme que le morphisme naturel, de la cohomologie de De Rham d'une variété différentielle vers sa cohomologie singulière à coefficients réels, est bijectif.
Dualité de SerreEn géométrie algébrique, la dualité de Serre est une dualité pour la cohomologie cohérente de variétés algébriques, démontrée par Jean-Pierre Serre. La version originale s'applique aux fibrés vectoriels sur une variété projective lisse, mais Alexander Grothendieck la généralise largement. Sur une variété de dimension n, le théorème énonce l'isomorphisme d'un groupe de cohomologie avec l'espace dual d'un autre, le . La dualité de Serre est l'analogue pour la cohomologie cohérente de la dualité de Poincaré en topologie.
Holomorphic vector bundleIn mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : E → X is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle. By Serre's GAGA, the category of holomorphic vector bundles on a smooth complex projective variety X (viewed as a complex manifold) is equivalent to the category of algebraic vector bundles (i.
Kähler identitiesIn complex geometry, the Kähler identities are a collection of identities between operators on a Kähler manifold relating the Dolbeault operators and their adjoints, contraction and wedge operators of the Kähler form, and the Laplacians of the Kähler metric. The Kähler identities combine with results of Hodge theory to produce a number of relations on de Rham and Dolbeault cohomology of compact Kähler manifolds, such as the Lefschetz hyperplane theorem, the hard Lefschetz theorem, the Hodge-Riemann bilinear relations, and the Hodge index theorem.