Théorème d'élimination des coupuresEn logique mathématique, le théorème d'élimination des coupures (ou Hauptsatz de Gentzen) est le résultat central établissant l'importance du calcul des séquents. Il a été initialement prouvé par Gerhard Gentzen en 1934 dans son article historique « Recherches sur la déduction logique » pour les systèmes LJ et LK formalisant la logique intuitionniste et classique, respectivement.
Règle d'inférenceDans un système logique, les régles d'inférence sont les règles qui fondent le processus de déduction, de dérivation ou de démonstration. L'application des règles sur les axiomes du système permet d'en démontrer les théorèmes. Une règle d'inférence est une fonction qui prend un -uplet de formules et rend une formule. Les formules arguments sont appelées « les prémisses » et la formule retournée est appelée la « conclusion ».
Modus ponensLe modus ponens, ou détachement, est une figure du raisonnement logique concernant l'implication. Elle consiste à affirmer une implication (« si A alors B ») et à poser ensuite l'antécédent (« or A ») pour en déduire le conséquent (« donc B »). Le terme modus ponens est une abréviation du latin modus ponendo ponens qui signifie « le mode qui, en posant, pose ». Il vient de ce qu'en posant (affirmant) A, on pose (affirme) B (ponendo est le gérondif du verbe ponere qui signifie poser, et ponens en est le participe présent).
Logique intuitionnisteLa logique intuitionniste est une logique qui diffère de la logique classique par le fait que la notion de vérité est remplacée par la notion de preuve constructive. Une proposition telle que « la constante d'Euler-Mascheroni est rationnelle ou la constante d'Euler-Mascheroni n'est pas rationnelle » n'est pas démontrée de manière constructive (intuitionniste) dans le cadre de nos connaissances mathématiques actuelles, car la tautologie classique « P ou non P » (tiers exclu) n'appartient pas à la logique intuitionniste.
Algèbre de Boole (logique)Lalgèbre de Boole, ou calcul booléen, est la partie des mathématiques qui s'intéresse à une approche algébrique de la logique, vue en termes de variables, d'opérateurs et de fonctions sur les variables logiques, ce qui permet d'utiliser des techniques algébriques pour traiter les expressions à deux valeurs du calcul des propositions. Elle fut lancée en 1854 par le mathématicien britannique George Boole. L'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Proof by contradictionIn logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid. More broadly, proof by contradiction is any form of argument that establishes a statement by arriving at a contradiction, even when the initial assumption is not the negation of the statement to be proved.
Logique paracohérenteEn logique mathématique, une logique paracohérente (aussi appelé logique paraconsistante) est un système logique qui tolère les contradictions, contrairement au système de la logique classique. Les logiques tolérantes aux incohérences sont étudiées depuis au moins 1910, avec des esquisses remontant sans doute au temps d'Aristote. Le terme paracohérent - (à côté du cohérent, paraconsistent en anglais) - n'a été employé qu'après 1976 par le philosophe péruvien .
Gerhard GentzenGerhard Gentzen ( à Greifswald - à Prague) est un mathématicien et logicien allemand, dont l'œuvre est fondamentale en théorie de la démonstration. Il fut l’un des étudiants de Weyl à l'université de Göttingen de 1929 à 1933. Il est mort dans un camp de prisonniers de guerre en 1945, après avoir été arrêté par les soviets à cause de ses loyautés nazies. Gentzen est un élève de Paul Bernays à l'université de Göttingen. Mais ce dernier ayant été renvoyé comme « non- aryen » en , Hermann Weyl devient formellement son directeur de thèse.
Démonstration formelleUne démonstration formelle est une séquence finie de propositions (appelées formules bien formées dans le cas d'un langage formel) dont chacun est un axiome, une hypothèse, ou résulte des propositions précédentes dans la séquence par une règle d'inférence. La dernière proposition de la séquence est un théorème d'un système formel. La notion de théorème n'est en général pas effective, donc n'existe pas de méthode par laquelle nous pouvons à chaque fois trouver une démonstration d'une proposition donnée ou de déterminer s'il y en a une.
Judgment (mathematical logic)In mathematical logic, a judgment (or judgement) or assertion is a statement or enunciation in a metalanguage. For example, typical judgments in first-order logic would be that a string is a well-formed formula, or that a proposition is true. Similarly, a judgment may assert the occurrence of a free variable in an expression of the object language, or the provability of a proposition. In general, a judgment may be any inductively definable assertion in the metatheory.