Concept

Fluxion (analyse)

Concepts associés (13)
Histoire du calcul infinitésimal
L'histoire du calcul infinitésimal remonte à l'Antiquité. Sa création est liée à une polémique entre deux mathématiciens : Isaac Newton et Gottfried Wilhelm Leibniz. Néanmoins, on retrouve chez des mathématiciens plus anciens les prémices de ce type de calcul : Archimède, Thābit ibn Qurra, Pierre de Fermat et Isaac Barrow notamment. La notion de nombre dérivé a vu le jour au dans les écrits de Leibniz et de Newton qui le nomme fluxion et qui le définit comme « le quotient ultime de deux accroissements évanescents ».
Fluxion
A fluxion is the instantaneous rate of change, or gradient, of a fluent (a time-varying quantity, or function) at a given point. Fluxions were introduced by Isaac Newton to describe his form of a time derivative (a derivative with respect to time). Newton introduced the concept in 1665 and detailed them in his mathematical treatise, Method of Fluxions. Fluxions and fluents made up Newton's early calculus. Fluxions were central to the Leibniz–Newton calculus controversy, when Newton sent a letter to Gottfried Wilhelm Leibniz explaining them, but concealing his words in code due to his suspicion.
Notation for differentiation
In differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with the context, and it is sometimes advantageous to use more than one notation in a given context. The most common notations for differentiation (and its opposite operation, the antidifferentiation or indefinite integration) are listed below.
Équation différentielle
En mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
The Analyst
The Analyst (subtitled A Discourse Addressed to an Infidel Mathematician: Wherein It Is Examined Whether the Object, Principles, and Inferences of the Modern Analysis Are More Distinctly Conceived, or More Evidently Deduced, Than Religious Mysteries and Points of Faith) is a book by George Berkeley. It was first published in 1734, first by J. Tonson (London), then by S. Fuller (Dublin). The "infidel mathematician" is believed to have been Edmond Halley, though others have speculated Sir Isaac Newton was intended.
Fluent (mathematics)
A fluent is a time-varying quantity or variable. The term was used by Isaac Newton in his early calculus to describe his form of a function. The concept was introduced by Newton in 1665 and detailed in his mathematical treatise, Method of Fluxions. Newton described any variable that changed its value as a fluent – for example, the velocity of a ball thrown in the air. The derivative of a fluent is known as a fluxion, the main focus of Newton's calculus. A fluent can be found from its corresponding fluxion through integration.
Limite (mathématiques élémentaires)
La notion de limite est très intuitive malgré sa formulation abstraite. Pour les mathématiques élémentaires, il convient de distinguer une limite en un point réel fini (pour une fonction numérique) et une limite en ou (pour une fonction numérique ou une suite), ces deux cas apparemment différents pouvant être unifiés à travers la notion topologique de voisinage. Les limites servent (entre autres) à définir les notions fondamentales de continuité et de dérivabilité.
Differential (mathematics)
In mathematics, differential refers to several related notions derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions. The term is used in various branches of mathematics such as calculus, differential geometry, algebraic geometry and algebraic topology. The term differential is used nonrigorously in calculus to refer to an infinitesimal ("infinitely small") change in some varying quantity.
Infiniment petit
Les infinitésimaux (ou infiniment petits) ont été utilisés pour exprimer l'idée d'objets si petits qu'il n'y a pas moyen de les voir ou de les mesurer. Le mot vient de infinitesimus (latin du ), ce qui signifiait à l'origine l'élément dans une série. Selon la notation de Leibniz, si x est une quantité, dx et Δx peuvent représenter une quantité infinitésimale de x. Dans le langage courant, un objet infiniment petit est un objet qui est plus petit que toute mesure possible, donc non pas d'une taille zéro, mais si petit qu'il ne peut être distingué de zéro par aucun moyen disponible.
Gottfried Wilhelm Leibniz
Gottfried Wilhelm Leibniz (), parfois francisé en Godefroid-Guillaume Leibniz, né à Leipzig le et mort à Hanovre le , est un philosophe, scientifique, mathématicien, logicien, diplomate, juriste, historien, bibliothécaire et philologue allemand. Esprit polymathe, personnalité importante de la période Frühaufklärung, il occupe une place primordiale dans l'histoire de la philosophie et l'histoire des sciences (notamment des mathématiques) et est souvent considéré comme le dernier « génie universel ».

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.