Théorème de DandelinEn mathématiques, le théorème de Dandelin, ou théorème de Dandelin-Quetelet ou théorème belge sur la section conique, est un théorème portant sur les coniques. Le théorème de Dandelin énonce que, si une ellipse ou une hyperbole est obtenue comme section conique d'un cône de révolution par un plan, alors : il existe deux sphères à la fois tangentes au cône et au plan de la conique (de part et d'autre de ce plan pour l'ellipse et d'un même côté de ce plan pour l'hyperbole) ; les points de tangence des deux sphères au plan sont les foyers de la conique ; les directrices de la conique sont les intersections du plan de la conique avec les plans contenant les cercles de tangences des sphères avec le cône.
Conjugate diametersIn geometry, two diameters of a conic section are said to be conjugate if each chord parallel to one diameter is bisected by the other diameter. For example, two diameters of a circle are conjugate if and only if they are perpendicular. For an ellipse, two diameters are conjugate if and only if the tangent line to the ellipse at an endpoint of one diameter is parallel to the other diameter. Each pair of conjugate diameters of an ellipse has a corresponding tangent parallelogram, sometimes called a bounding parallelogram (skewed compared to a bounding rectangle).
Circles of ApolloniusThe circles of Apollonius are any of several sets of circles associated with Apollonius of Perga, a renowned Greek geometer. Most of these circles are found in planar Euclidean geometry, but analogs have been defined on other surfaces; for example, counterparts on the surface of a sphere can be defined through stereographic projection. The main uses of this term are fivefold: Apollonius showed that a circle can be defined as the set of points in a plane that have a specified ratio of distances to two fixed points, known as foci.
Théorème de Descartes (géométrie)En géométrie, le théorème de Descartes, découvert par René Descartes, établit une relation entre quatre cercles tangents entre eux. Il peut être utilisé pour construire les cercles tangents à trois cercles donnés tangents deux à deux. Les problèmes géométriques concernant des cercles tangents sont très anciens. En Grèce antique, trois siècles avant Jésus-Christ, Apollonius de Perga a consacré un livre entier à ce sujet ; malheureusement ce livre, Les Contacts, a disparu.
Conical surfaceIn geometry, a (general) conical surface is the unbounded surface formed by the union of all the straight lines that pass through a fixed point — the apex or vertex — and any point of some fixed space curve — the directrix — that does not contain the apex. Each of those lines is called a generatrix of the surface. Every conic surface is ruled and developable. In general, a conical surface consists of two congruent unbounded halves joined by the apex.
Cercle de FordEn mathématiques, le cercle de Ford est le cercle de centre et de rayon associé à la fraction irréductible , une fraction sous forme simplifiée, c'est-à-dire composée d'entiers premiers entre eux. Les cercles de Ford sont nommés ainsi en l'honneur du mathématicien américain Lester Ford (père), qui les a décrits dans un article publié dans American Mathematical Monthly en 1938. Le cercle de Ford associé à la fraction irréductible p/q est noté C[p/q] ou C[p, q].
MénechmeMénechme, en grec ancien , (380-320 av. J.-C.) est un mathématicien et géomètre grec. Né à Alopeconnesos en Asie Mineure, Ménechme est le frère du mathématicien Dinostrate. Il était le disciple de Platon et d'Eudoxe. Il est avec Aristote l'un des précepteurs d'Alexandre le Grand. C'est aussi un des premiers à théoriser le Népotisme grec Ménechme est l’auteur de la théorie des sections coniques qui dans l'Antiquité prennent le nom de « courbes de Ménechme ». Il travaille également la duplication du cube.
Rayon de courburevignette|Rayon de courbure d'un tracé. Le rayon de courbure d'un tracé, en général noté ρ (lettre grecque rhô) indique son niveau d'incurvation : plus le rayon de courbure est élevé, plus le tracé se rapproche d'une ligne droite, et inversement. Mathématiquement, le rayon de courbure est la valeur absolue du rayon du cercle tangent à la courbe au point recherché, cercle qui y « épouse cette courbe le mieux possible ». Ce cercle est appelé cercle osculateur à la courbe en ce point.
Sciences et techniques de la RenaissanceLes sciences et techniques de la Renaissance sont des découvertes d'une ampleur considérable dans l'histoire du développement social, culturel et technique de l'Europe médiévale. La Renaissance est la période de l'histoire européenne qui marque la fin du Moyen Âge et le début des Temps modernes. Pendant cette période, dans le courant du et au , les pays européens se lancent dans des expéditions maritimes d'envergure mondiale, connues sous le nom de grandes découvertes.