Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Hamiltonien de HeisenbergDans la théorie du magnétisme quantique, l'hamiltonien de Heisenberg décrit un ensemble de moments magnétiques localisés en interaction. Cet hamiltonien s'écrit : où est le magnéton de Bohr, est le rapport gyromagnétique du i-ème moment localisé, est un opérateur de spin, est le champ magnétique externe, et est la constante d'échange. Pour l'interaction est antiferromagnétique et pour elle est ferromagnétique. En général, les sites i sont placés sur les nœuds d'un réseau régulier.
Géométrie de contactLa géométrie de contact est la partie de la géométrie différentielle qui étudie les formes et structures de contact. Elle entretient d'étroits liens avec la géométrie symplectique, la géométrie complexe, la théorie des feuilletages de codimension 1 et les systèmes dynamiques. La géométrie de contact classique est née de l'étude de la thermodynamique et de l'optique géométrique. Une structure de contact sur une variété est un champ d'hyperplans c'est-à-dire la donnée, en tout point de la variété, d'un hyperplan dans l'espace tangent.
Bethe ansatzIn physics, the Bethe ansatz is an ansatz for finding the exact wavefunctions of certain quantum many-body models, most commonly for one-dimensional lattice models. It was first used by Hans Bethe in 1931 to find the exact eigenvalues and eigenvectors of the one-dimensional antiferromagnetic isotropic (XXX) Heisenberg model. Since then the method has been extended to other spin chains and statistical lattice models. "Bethe ansatz problems" were one of the topics featuring in the "To learn" section of Richard Feynman's blackboard at the time of his death.
Transformation canoniqueEn mécanique hamiltonienne, une transformation canonique est un changement des coordonnées canoniques (q, p, t) → (Q, P, t) qui conserve la forme des équations de Hamilton, sans pour autant nécessairement conserver le Hamiltonien en lui-même. Les transformations canoniques sont utiles pour les équations de Hamilton-Jacobi (une technique utile pour calculer les quantités conservées) et le théorème de Liouville (à la base de la mécanique statistique classique).
Théorie des représentationsLa théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Sigma modelIn physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or a symmetric space. The model may or may not be quantized. An example of the non-quantized version is the Skyrme model; it cannot be quantized due to non-linearities of power greater than 4. In general, sigma models admit (classical) topological soliton solutions, for example, the Skyrmion for the Skyrme model.
Réseau de TodaEn physique du solide, le réseau de Toda, introduit par en 1967, est un modèle simple pour un cristal unidimensionnel. Il est donné par une chaîne de particules dont l'interaction avec le voisin le plus proche est décrit par l'opérateur hamiltonien et les équations du mouvement où est le déplacement de la -ième particule depuis sa position d'équilibre, est sa quantité de mouvement (masse ), et est le potentiel Toda.
Action-angle coordinatesIn classical mechanics, action-angle variables are a set of canonical coordinates that are useful in characterizing the nature of commuting flows in integrable systems when the conserved energy level set is compact, and the commuting flows are complete. Action-angle variables are also important in obtaining the frequencies of oscillatory or rotational motion without solving the equations of motion. They only exist, providing a key characterization of the dynamics, when the system is completely integrable, i.
Three-body problemIn physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities (or momenta) of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's law of universal gravitation. The three-body problem is a special case of the n-body problem. Unlike two-body problems, no general closed-form solution exists, as the resulting dynamical system is chaotic for most initial conditions, and numerical methods are generally required.