Hypothèse ergodiqueL'hypothèse ergodique, ou hypothèse d'ergodicité, est une hypothèse fondamentale de la physique statistique. Elle fut formulée initialement par Ludwig Boltzmann en 1871 pour les besoins de sa théorie cinétique des gaz. Elle s'appliquait alors aux systèmes composés d'un très grand nombre de particules, et affirmait qu'à l'équilibre, la valeur moyenne d'une grandeur calculée de manière statistique est égale à la moyenne d'un très grand nombre de mesures prises dans le temps.
Système dynamique mesuréUn système dynamique mesuré est un objet mathématique, représentant un espace de phases muni d'une loi d'évolution, particulièrement étudié en théorie ergodique. Un système dynamique mesuré est la donnée d'un espace probabilisé et d'une application mesurable f : X → X. On exige que f préserve la mesure, ce qui veut dire que : Cette propriété très riche permet d'obtenir de puissants théorèmes. Par ailleurs, un théorème affirme qu'il existe, pour toute transformation continue X → X d'un espace topologique compact X, une mesure de probabilité, borélienne, préservant cette transformation.
Chaîne de Markovvignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).
ErgodicityIn mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Processus de BernoulliEn probabilités et en statistiques, un processus de Bernoulli est un processus stochastique discret qui consiste en une suite de variables aléatoires indépendantes qui prennent leurs valeurs parmi deux symboles. Prosaïquement, un processus de Bernoulli consiste à tirer à pile ou face plusieurs fois de suite, éventuellement avec une pièce truquée. Une variable dans une séquence de ce type peut être qualifiée de variable de Bernoulli. Un processus de Bernoulli est une chaîne de Markov. Son arbre de probabilité est un arbre binaire.
Décalage de Bernoulli (langage formel)Un décalage de Bernoulli (en anglais Bernoulli shift) est une transformation opérant sur des mots de longueur infinie, étudiée en dynamique symbolique. Étant donné un alphabet Λ, c'est-à-dire un ensemble fini. Un mot infini est une suite à valeurs dans l'alphabet Λ. Le décalage de Bernoulli est l'application qui décale un mot d'un cran vers la gauche : On peut définir de même les décalages de Bernoulli pour des mots infinis indexés sur et les résultats et propriétés énoncés sont similaires.
Processus stationnairePour accéder aux propriétés essentielles d'un signal physique il peut être commode de le considérer comme une réalisation d'un processus aléatoire (voir quelques précisions dans Processus continu). Le problème est largement simplifié si le processus associé au signal peut être considéré comme un processus stationnaire, c'est-à-dire si ses propriétés statistiques caractérisées par des espérances mathématiques sont indépendantes du temps.
Approximation diophantiennevignette|Meilleurs approximations rationnelles pour les nombres irrationnels Π (vert), e (bleu), φ (rose), √3/2 (gris), 1/√2 (rouge) et 1/√3 (orange) tracées sous forme de pentes y/x avec des erreurs par rapport à leurs vraies valeurs (noirs) par CMG Lee. En théorie des nombres, l'approximation diophantienne, qui porte le nom de Diophante d'Alexandrie, traite de l'approximation des nombres réels par des nombres rationnels.
Mixing (mathematics)In mathematics, mixing is an abstract concept originating from physics: the attempt to describe the irreversible thermodynamic process of mixing in the everyday world: e.g. mixing paint, mixing drinks, industrial mixing. The concept appears in ergodic theory—the study of stochastic processes and measure-preserving dynamical systems. Several different definitions for mixing exist, including strong mixing, weak mixing and topological mixing, with the last not requiring a measure to be defined.