Théorème d'uniformisation de RiemannEn mathématiques, le théorème d'uniformisation de Riemann est un résultat de base dans la théorie des surfaces de Riemann, c'est-à-dire des variétés complexes de dimension 1. Il assure que toute surface de Riemann simplement connexe peut être mise en correspondance biholomorphe avec l'une des trois surfaces suivantes : le plan complexe C, le disque unité de ce plan, ou la sphère de Riemann, c'est-à-dire la droite projective complexe P1(C). Théorème d'uniformisation Transformation conforme Catégorie:Surface
Transformation conformeEn mathématiques, et plus précisément en géométrie et en analyse complexe, une transformation conforme est une bijection qui conserve localement les angles, c'est-à-dire qui se comporte au voisinage de chaque point où elle est définie presque comme une similitude. Dans le plan, les transformations conformes qui conservent les angles orientés ont une telle utilité qu'il est fréquent qu'elles soient les seules baptisées du terme de conformes. Elles se confondent alors avec les bijections holomorphes.
Surface de RiemannEn géométrie différentielle et géométrie analytique complexe, une surface de Riemann est une variété complexe de dimension 1. Cette notion a été introduite par Bernhard Riemann pour prendre en compte les singularités et les complications topologiques qui accompagnent certains prolongements analytiques de fonctions holomorphes. Par oubli de structure, une surface de Riemann se présente comme une variété différentielle réelle de dimension 2, d'où le nom surface. Elles ont été nommées en hommage au mathématicien allemand Bernhard Riemann.
Transformation de MöbiusEn mathématiques, et plus particulièrement en géométrie, les transformations de Möbius sont de manière générale des automorphismes du compactifié d'Alexandrov de noté , définies comme la composée d'un nombre fini d'inversions par rapport à des hyperplans ou des hypersphères.
Constantin CarathéodoryConstantin Carathéodory (Κωνσταντῖνος Καραθεoδωρῆς) (né le à Berlin et mort le à Munich) est un mathématicien grec auteur d'importants travaux en théorie des fonctions à variables réelles, calcul des variations et théorie de la mesure. En 1909, Carathéodory fit œuvre de pionnier dans la formulation axiomatique de la thermodynamique en utilisant une approche purement géométrique. Constantin Carathéodory naît à Berlin de parents grecs phanariotes, puis il grandit à Bruxelles, où son père Stéphane Carathéodory était ambassadeur de l'Empire ottoman en Belgique.
Théorème du quart de KoebeEn analyse complexe, le théorème du quart de Koebe s'énonce comme suit :Théorème du quart de Koebe. L'image d'une fonction analytique injective du disque de l'unité sur un sous-ensemble du plan complexe contient le disque dont le centre est et dont le rayon est .Le théorème porte le nom de Paul Koebe, qui a conjecturé le résultat en 1907. Le théorème a été prouvé par Ludwig Bieberbach en 1916. L'exemple de la fonction de Koebe montre que la constante est optimale. Soit que que l'on suppose univalente dans .
Beltrami equationIn mathematics, the Beltrami equation, named after Eugenio Beltrami, is the partial differential equation for w a complex distribution of the complex variable z in some open set U, with derivatives that are locally L2, and where μ is a given complex function in L∞(U) of norm less than 1, called the Beltrami coefficient, and where and are Wirtinger derivatives. Classically this differential equation was used by Gauss to prove the existence locally of isothermal coordinates on a surface with analytic Riemannian metric.
BiholomorphismIn the mathematical theory of functions of one or more complex variables, and also in complex algebraic geometry, a biholomorphism or biholomorphic function is a bijective holomorphic function whose inverse is also holomorphic. Formally, a biholomorphic function is a function defined on an open subset U of the -dimensional complex space Cn with values in Cn which is holomorphic and one-to-one, such that its is an open set in Cn and the inverse is also holomorphic. More generally, U and V can be complex manifolds.
Sphère de RiemannEn mathématiques, la sphère de Riemann est une manière de prolonger le plan des nombres complexes avec un point additionnel à l'infini, de manière que certaines expressions mathématiques deviennent convergentes et élégantes, du moins dans certains contextes. Déjà envisagée par le mathématicien Carl Friedrich Gauss, elle est baptisée du nom de son élève Bernhard Riemann. Ce plan s'appelle également la droite projective complexe, dénoté .
Lemme de SchwarzLe lemme de Schwarz est un lemme d'analyse complexe, donnant des contraintes sur les fonctions holomorphes du disque unité dans lui-même. Il ne faut pas le confondre avec un autre résultat d'analyse complexe, le . Soit une fonction holomorphe dans le disque ouvert D de centre 0 et de rayon 1, et telle que : Alors on a : pour tout appartenant à D et .Si, de plus, il existe un élément non nul de D vérifiant , ou bien si , alors il existe un nombre complexe de module 1 tel que pour tout appartenant à .