Dedekind-infinite setIn mathematics, a set A is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset B of A is equinumerous to A. Explicitly, this means that there exists a bijective function from A onto some proper subset B of A. A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers.
Théorie des ensembles non bien fondésLa théorie des ensembles non bien fondés est une variante de la théorie axiomatique des ensembles qui permet aux ensembles de s'appartenir les uns aux autres sans limite. Autrement dit, c'est une théorie des ensembles qui ne satisfait pas l'axiome de fondation. Plus précisément, dans la théorie des ensembles non bien fondés, l'axiome de fondation de ZFC est remplacé par un axiome impliquant sa négation.
Absoluteness (logic)In mathematical logic, a formula is said to be absolute to some class of structures (also called models), if it has the same truth value in each of the members of that class. One can also speak of absoluteness of a formula between two structures, if it is absolute to some class which contains both of them.. Theorems about absoluteness typically establish relationships between the absoluteness of formulas and their syntactic form. There are two weaker forms of partial absoluteness.
Derived set (mathematics)In mathematics, more specifically in point-set topology, the derived set of a subset of a topological space is the set of all limit points of It is usually denoted by The concept was first introduced by Georg Cantor in 1872 and he developed set theory in large part to study derived sets on the real line. The derived set of a subset of a topological space denoted by is the set of all points that are limit points of that is, points such that every neighbourhood of contains a point of other than itself.
Cofinal (mathematics)In mathematics, a subset of a preordered set is said to be cofinal or frequent in if for every it is possible to find an element in that is "larger than " (explicitly, "larger than " means ). Cofinal subsets are very important in the theory of directed sets and nets, where “cofinal subnet” is the appropriate generalization of "subsequence".
Premier ordinal non dénombrableEn mathématiques, le premier ordinal non dénombrable, noté ω1 ou parfois Ω, est le plus petit ordinal non dénombrable ; c'est aussi l'ensemble des ordinaux finis ou infinis dénombrables. En d'autres termes, c'est l'ordinal de Hartogs de tout ensemble infini dénombrable. ω1 est le supremum de tous les ordinaux au plus dénombrables ; ce sont ses éléments. Comme tout ordinal (dans l'approche de von Neumann), ω1 est un ensemble bien ordonné, la relation d'ordre étant la relation d'appartenance : ∈.
Paradoxe de CantorLe paradoxe de Cantor, ou paradoxe du plus grand cardinal, est un paradoxe de la théorie des ensembles dont l'argument a été découvert par Georg Cantor dans les années 1890. On le trouve dans sa lettre adressée à David Hilbert, datée de 1897. Il est appelé ainsi par Bertrand Russell dans ses Principles of Mathematics de 1903. Le paradoxe énonce que l'existence d'un plus grand cardinal conduit à une contradiction.
CompteLe mot compte peut référer au verbe compter, au sens de dénombrer. Un compte peut aussi référer à des unités de valeur, et à des listes utilisées par exemple par des entreprises, comme les banques et instituts financiers. Le verbe compter et le substantif compte, autrefois comput dans sa forme savante ou mathématique, proviennent respectivement de l'évolution du verbe latin computāre, signifiant "égaliser des sommes d'argent, des montants de même valeur pour assurer une transaction équilibrée...
Récurrence transfinieEn mathématiques, on parle de récurrence transfinie ou de récursion transfinie pour deux principes reliés mais distincts. Les définitions par récursion transfinie — permettent de construire des objets infinis, et généralisent les définitions de suite par récurrence sur l'ensemble N des entiers naturels en considérant des familles indexées par un ordinal infini quelconque, au lieu de se borner au plus petit d'entre eux qu'est N, appelé ω en tant que nombre ordinal.
Relation bien fondéeEn mathématiques, une relation bien fondée (encore appelée relation noethérienne ou relation artinienne) est une relation binaire vérifiant l'une des deux conditions suivantes, équivalentes d'après l'axiome du choix dépendant (une version faible de l'axiome du choix) : pour toute partie non vide X de E, il existe un élément x de X n'ayant aucun R-antécédent dans X (un R-antécédent de x dans X est un élément y de X vérifiant yRx) ; condition de chaîne descendante : il n'existe pas de suite infinie (xn) d'élém