Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
En mathématiques, les fonctions continues sont d'une importance primordiale. Cependant, toutes les fonctions ne sont pas continues. On appelle discontinuité tout point du domaine d'une fonction où celle-ci n'est pas continue. L'ensemble des discontinuités d'une fonction peut être discret, dense voire être le domaine entier. Dans cet article, seules les discontinuités des fonctions réelles à valeurs réelles seront étudiées. On considère une fonction à valeurs réelles de la variable réelle , définie sur un voisinage du point où est discontinue. On a alors trois possibilités : la limite à gauche et la limite à droite en existent et sont finies et égales. les limites et existent et sont finies, mais ne sont pas égales. au moins une des deux limites et n'existe pas ou est infinie. L'expression « discontinuité apparente » est parfois utilisée au lieu de « singularité apparente », pour un point où la fonction n'est pas définie mais a une limite finie. C'est un abus de langage, puisque la (dis-)continuité n'a de sens qu'en un point du domaine de la fonction. Les seules discontinuités d'une fonction monotone sur un intervalle réel sont des sauts, d'après le théorème de la limite monotone. La fonction est discontinue en et c'est une discontinuité apparente. En effet, les limites à gauche et à droite en 1 valent toutes les deux 1. La fonction est discontinue en et c'est une discontinuité de saut. La fonction est discontinue en et c'est une discontinuité essentielle. Il aurait suffi qu'une des deux limites (à gauche ou à droite) n'existe pas ou soit infinie. Toutefois, cet exemple permet de montrer une discontinuité essentielle même pour l'extension au domaine complexe. L'oscillation d'une fonction en un point quantifie une discontinuité de la sorte : pour une discontinuité apparente, la distance entre les limites et la valeur de la fonction au point est son oscillation ; pour un saut, la taille du saut est son oscillation (en supposant que la valeur au point se trouve entre les deux limites) ; dans une discontinuité essentielle, l'oscillation mesure l'incapacité de la limite à exister.
Alfio Quarteroni, Paolo Pacciarini
Monika Henzinger, Ingmar Weber, Paul David Dütting