Notation SchoenfliesLa notation Schoenflies (ou Schönflies ou Schönfließ), du nom d'Arthur Moritz Schoenflies, est l'une de deux conventions communes utilisées pour décrire les groupes ponctuels de symétrie (aussi appelés groupes cristallographiques). Cette notation est utilisée en spectroscopie. L'autre convention est la notation Hermann-Mauguin, aussi connue sous le nom de notation internationale. Un groupe ponctuel de symétrie dans la convention de Schoenflies est complètement adéquat pour décrire la symétrie de la molécule ; c'est suffisant pour la spectroscopie.
Graphe des cyclesEn mathématiques, et plus particulièrement en théorie des groupes, le graphe des cycles d'un groupe représente l'ensemble des cycles de ce groupe, ce qui est particulièrement utile pour visualiser la structure des petits groupes finis. Pour les groupes ayant moins de 16 éléments, le graphe des cycles détermine le groupe à isomorphisme près. Un cycle est l'ensemble des puissances d'un élément donné du groupe ; a, la n-ième puissance de l'élément a, est définie comme le produit de a par lui-même n fois (avec les conventions a = a et a = e, l'élément neutre du groupe).
Coxeter notationIn geometry, Coxeter notation (also Coxeter symbol) is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson. For Coxeter groups, defined by pure reflections, there is a direct correspondence between the bracket notation and Coxeter-Dynkin diagram.
Groupe d'espaceLe groupe d'espace d'un cristal est constitué par l'ensemble des symétries d'une structure cristalline, c'est-à-dire l'ensemble des isométries affines laissant la structure invariante. Il s'agit d'un groupe au sens mathématique du terme. Tout groupe d'espace résulte de la combinaison d'un réseau de Bravais et d'un groupe ponctuel de symétrie : toute symétrie de la structure résulte du produit d'une translation du réseau et d'une transformation du groupe ponctuel. La notation de Hermann-Mauguin est utilisée pour représenter un groupe d'espace.
Isometry groupIn mathematics, the isometry group of a metric space is the set of all bijective isometries (that is, bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element is the identity function. The elements of the isometry group are sometimes called motions of the space. Every isometry group of a metric space is a subgroup of isometries. It represents in most cases a possible set of symmetries of objects/figures in the space, or functions defined on the space.
Groupe des quaternionsEn mathématiques et plus précisément en théorie des groupes, le groupe des quaternions est l'un des deux groupes non abéliens d'ordre 8. Il admet une représentation réelle irréductible de degré 4, et la sous-algèbre des matrices 4×4 engendrée par son image est un corps gauche qui s'identifie au corps des quaternions de Hamilton. Le groupe des quaternions est souvent désigné par le symbole Q ou Q8 et est écrit sous forme multiplicative, avec les 8 éléments suivants : Ici, 1 est l'élément neutre, et pour tout a dans Q.
Groupe spinorielEn mathématiques, le groupe spinoriel de degré n, noté Spin(n), est un revêtement double particulier du groupe spécial orthogonal réel SO(n,R). C’est-à-dire qu’il existe une suite exacte de groupes de Lie On peut aussi définir les groupes spinoriels d'une forme quadratique non dégénérée sur un corps commutatif. Pour n > 2, Spin(n) est simplement connexe et coïncide avec le revêtement universel de SO(n,R). En tant que groupe de Lie, Spin(n) partage sa dimension n(n–1)/2 et son algèbre de Lie avec le groupe spécial orthogonal.
3D rotation groupIn mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry), and orientation (i.e., handedness of space). Composing two rotations results in another rotation, every rotation has a unique inverse rotation, and the identity map satisfies the definition of a rotation.
AntidiamantEn géométrie, un antidiamant est un polyèdre constitué de deux pyramides à base régulière de sommets S et S', symétriques, dont l'une a subi une rotation autour de l'axe SS'. Des arêtes sont ajoutées pour relier les sommets des deux bases ainsi obtenues. L' ordre de l'antidiamant désigne le nombre d'arêtes issues du sommet S (ou S'). Le cube est un antidiamant d'ordre 3. Un antidiamant est le dual d'un antiprisme semi-régulier. Diamant Trapézoèdre Catégorie:Polyèdre en:Trapezohedron eo:Kajtopluredro es:Tra
Quaternions de HurwitzLes quaternions de Hurwitz portent ce nom en l'honneur du mathématicien allemand Adolf Hurwitz. Soit A un anneau. On definit l'algèbre de quaternions H(A) comme l'algèbre A[H] du groupe H des quaternions. Plus explicitement, c'est le A-module libre engendré par 1, i, j et k, muni de la structure d'algèbre : 1 élément neutre pour la multiplication, et les identités : Soit , l'algèbre des quaternions sur l'anneau Z des entiers relatifs.