In mathematics, a unit sphere is simply a sphere of radius one around a given center. More generally, it is the set of points of distance 1 from a fixed central point, where different norms can be used as general notions of "distance". A unit ball is the closed set of points of distance less than or equal to 1 from a fixed central point. Usually the center is at the origin of the space, so one speaks of "the unit ball" or "the unit sphere". Special cases are the unit circle and the unit disk. The importance of the unit sphere is that any sphere can be transformed to a unit sphere by a combination of translation and scaling. In this way the properties of spheres in general can be reduced to the study of the unit sphere. In Euclidean space of n dimensions, the (n−1)-dimensional unit sphere is the set of all points which satisfy the equation The n-dimensional open unit ball is the set of all points satisfying the inequality and the n-dimensional closed unit ball is the set of all points satisfying the inequality The classical equation of a unit sphere is that of the ellipsoid with a radius of 1 and no alterations to the x-, y-, or z- axes: The volume of the unit ball in n-dimensional Euclidean space, and the surface area of the unit sphere, appear in many important formulas of analysis. The volume of the unit ball in n dimensions, which we denote Vn, can be expressed by making use of the gamma function. It is where n!! is the double factorial. The hypervolume of the (n−1)-dimensional unit sphere (i.e., the "area" of the boundary of the n-dimensional unit ball), which we denote An−1, can be expressed as where the last equality holds only for n > 0. For example, is the "area" of the boundary of the unit ball , which simply counts the two points. Then is the "area" of the boundary of the unit disc, which is the circumference of the unit circle. is the area of the boundary of the unit ball , which is the surface area of the unit sphere . The surface areas and the volumes for some values of are as follows: where the decimal expanded values for n ≥ 2 are rounded to the displayed precision.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
MATH-201: Analysis III
Calcul différentiel et intégral. Eléments d'analyse complexe.
MATH-496: Computational linear algebra
This is an introductory course to the concentration of measure phenomenon - random functions that depend on many random variables tend to be often close to constant functions.
MATH-342: Time series
A first course in statistical time series analysis and applications.
Afficher plus
Séances de cours associées (33)
Surfaces et integrals fermés
Explique les surfaces fermées comme les sphères, les cubes et les cônes sans couverture, et leur traversée et l'enlèvement des bords.
Applications du théorème des résidus dans l'analyse complexe
Couvre les applications du théorème des résidus dans l'évaluation des intégrales complexes liées à l'analyse réelle.
Centre de gravité et changement variable
Discute du centre de gravité, du changement variable, des coordonnées sphériques et de la bijectivité en analyse mathématique.
Afficher plus
Publications associées (35)

The ABCD of topological recursion

Nicolas Gerson Orantin

Kontsevich and Soibelman reformulated and slightly generalised the topological recursion of [43], seeing it as a quantisation of certain quadratic Lagrangians in T*V for some vector space V. KS topological recursion is a procedure which takes as initial da ...
San Diego2024

Spectral Hypergraph Sparsifiers of Nearly Linear Size

Mikhail Kapralov, Jakab Tardos

Graph sparsification has been studied extensively over the past two decades, culminating in spectral sparsifiers of optimal size (up to constant factors). Spectral hypergraph sparsification is a natural analogue of this problem, for which optimal bounds on ...
IEEE COMPUTER SOC2022

Realizing doubles: a conjugation zoo

Jérôme Scherer

Conjugation spaces are topological spaces equipped with an involution such that their fixed points have the same mod 2 cohomology (as a graded vector space, a ring and even an unstable algebra) but with all degrees divided by two, generalizing the classica ...
CAMBRIDGE UNIV PRESS2021
Afficher plus
Personnes associées (1)
Concepts associés (16)
Calcul du volume de l'hypersphère
La démonstration mathématique suivante pour le calcul du volume de l'hypersphère dépend des définitions précises de la sphère et de la boule. Le volume intérieur d'une sphère est le volume de la boule délimitée par la sphère. Nous intégrerons en coordonnées cartésiennes orthonormales dans l'espace euclidien. Notons le volume de la boule de rayon r en dimension n ≥ 1. Alors : parce que c'est la longueur d'un segment deux fois plus long que le rayon, i.e. La sphère de dimension 0 qui borde cette boule est constituée des deux points r et –r.
Cercle unité
thumb|Cercle unité Le cercle unité est une expression courante pour désigner l'ensemble des nombres complexes de module 1. Si le module est vu comme une norme euclidienne, le cercle est une courbe de longueur 2π, et est le bord d'un disque d'aire π. Le cercle unité est l'image de l'axe des imaginaires purs iR par l'exponentielle complexe. Le cercle unité est stable par produit. C'est un sous-groupe du groupe des inversibles C* de C. Plus précisément, c'est son plus grand sous-groupe compact.
Norme (mathématiques)
En géométrie, la norme est une extension de la valeur absolue des nombres aux vecteurs. Elle permet de mesurer la longueur commune à toutes les représentations d'un vecteur dans un espace affine, mais définit aussi une distance entre deux vecteurs invariante par translation et compatible avec la multiplication externe. La norme usuelle dans le plan ou l'espace est dite euclidienne car elle est associée à un produit scalaire, à la base de la géométrie euclidienne.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.