Calcul du volume de l'hypersphèreLa démonstration mathématique suivante pour le calcul du volume de l'hypersphère dépend des définitions précises de la sphère et de la boule. Le volume intérieur d'une sphère est le volume de la boule délimitée par la sphère. Nous intégrerons en coordonnées cartésiennes orthonormales dans l'espace euclidien. Notons le volume de la boule de rayon r en dimension n ≥ 1. Alors : parce que c'est la longueur d'un segment deux fois plus long que le rayon, i.e. La sphère de dimension 0 qui borde cette boule est constituée des deux points r et –r.
Cercle unitéthumb|Cercle unité Le cercle unité est une expression courante pour désigner l'ensemble des nombres complexes de module 1. Si le module est vu comme une norme euclidienne, le cercle est une courbe de longueur 2π, et est le bord d'un disque d'aire π. Le cercle unité est l'image de l'axe des imaginaires purs iR par l'exponentielle complexe. Le cercle unité est stable par produit. C'est un sous-groupe du groupe des inversibles C* de C. Plus précisément, c'est son plus grand sous-groupe compact.
Norme (mathématiques)En géométrie, la norme est une extension de la valeur absolue des nombres aux vecteurs. Elle permet de mesurer la longueur commune à toutes les représentations d'un vecteur dans un espace affine, mais définit aussi une distance entre deux vecteurs invariante par translation et compatible avec la multiplication externe. La norme usuelle dans le plan ou l'espace est dite euclidienne car elle est associée à un produit scalaire, à la base de la géométrie euclidienne.
Boule (topologie)En topologie, une boule est un type de voisinage particulier dans un espace métrique. Le nom évoque, à juste titre, la boule solide dans l'espace usuel à trois dimensions, mais la notion se généralise entre autres à des espaces de dimension plus grande (ou plus petite) ou encore de norme non euclidienne. Dans ce cas, une boule peut ne pas être « ronde » au sens usuel du terme.
Euclidean distanceIn mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore occasionally being called the Pythagorean distance. These names come from the ancient Greek mathematicians Euclid and Pythagoras, although Euclid did not represent distances as numbers, and the connection from the Pythagorean theorem to distance calculation was not made until the 18th century.
N-sphèreEn géométrie, la sphère de dimension n, l'hypersphère ou n-sphère est une généralisation de la sphère à un espace euclidien de dimension quelconque. L'hypersphère constitue un des exemples les plus simples de variété, elle est plus précisément une hypersurface de l'espace euclidien , notée en général . Soient E un espace euclidien de dimension n + 1, A un point de E, et R un nombre réel strictement positif. On appelle hypersphère de centre A et de rayon R l'ensemble des points M dont la distance à A vaut R.
Coordonnées sphériquesvignette|Illustration de la convention de l'article. La position du point P est définie par la distance et par les angles (colatitude) et (longitude).|alt= On appelle coordonnées sphériques divers systèmes de coordonnées orthogonales de l'espace analogues aux coordonnées polaires du plan. Un point de l'espace est repéré dans ces systèmes par la distance à une origine (le pôle) et par deux angles. Ils sont d'emploi courant pour le repérage géographique : l'altitude, la latitude et la longitude sont une variante de ces coordonnées.
Espace vectoriel norméUn espace vectoriel normé (EVN) est un espace vectoriel muni d'une norme. Cette structure mathématique développe des propriétés géométriques de distance compatible avec les opérations de l'algèbre linéaire. Développée notamment par David Hilbert et Stefan Banach, cette notion est fondamentale en analyse et plus particulièrement en analyse fonctionnelle, avec l'utilisation d'espaces de Banach tels que les espaces L. Norme (mathématiques) Soit K un corps commutatif muni d'une valeur absolue, et non discret (par exemple le corps des réels ou des complexes).
Ensemble convexeUn objet géométrique est dit convexe lorsque, chaque fois qu'on y prend deux points et , le segment qui les joint y est entièrement contenu. Ainsi un cube plein, un disque ou une boule sont convexes, mais un objet creux ou bosselé ne l'est pas. On suppose travailler dans un contexte où le segment reliant deux points quelconques et a un sens (par exemple dans un espace affine sur R — en particulier dans un espace affine sur C — ou dans un ).
Ensemble absorbantIn functional analysis and related areas of mathematics an absorbing set in a vector space is a set which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are radial or absorbent set. Every neighborhood of the origin in every topological vector space is an absorbing subset.