Catégorie enrichieUne catégorie enrichie sur une catégorie monoïdale , ou -catégorie est une extension du concept mathématique de catégorie, où les morphismes, au lieu de former une classe ou un ensemble dépourvu de structure, sont des éléments de . Le concept de catégorie enrichie part de l'observation que dans de nombreuses situations, les morphismes ont une structure naturelle d'espace vectoriel ou topologique. La catégorie doit être monoïdale afin de pouvoir définir la composition des morphismes, appelés dans ce cas hom-objets au lieu de hom-sets.
Théorie des catégories supérieuresEn mathématiques, la théorie des catégories supérieures est la partie de la théorie des catégories à un ordre supérieur, ce qui signifie que certaines égalités sont remplacées par des flèches explicites afin de pouvoir étudier explicitement la structure derrière ces égalités. La théorie des catégories supérieures est souvent appliquée en topologie algébrique (en particulier en théorie de l'homotopie ), où l'on étudie les invariants algébriques des espaces, tels que leur ∞-groupoïde fondamental faible.
Catégorie des petites catégoriesEn mathématiques, plus précisément en théorie des catégories, la catégorie des petites catégories, notée Cat, est la catégorie dont les objets sont les petites catégories et dont les morphismes sont les foncteurs entre petites catégories. Cat peut en fait être considérée comme une 2-catégorie, les transformations naturelles servant de 2-morphismes. L'objet initial de Cat est la catégorie vide 0, qui est la catégorie sans objets et sans morphismes. L'objet final est la catégorie finale ou catégorie triviale 1 ayant un seul objet et un seul morphisme.
Catégorie monoïdaleEn mathématiques, une catégorie monoïdale est une catégorie munie d'un bifoncteur qui généralise la notion de produit tensoriel de deux structures algébriques. Intuitivement, il s'agit de l'analogue, au niveau des catégories, de la notion de monoïde, c'est-à-dire que le bifoncteur joue le rôle d'une sorte de multiplication pour les objets de la catégorie. Une catégorie monoïdale est une catégorie munie : D'un bifoncteur appelé produit tensoriel. D'un objet I appartenant à appelé « objet unité ».
BicategoryIn mathematics, a bicategory (or a weak 2-category) is a concept in used to extend the notion of to handle the cases where the composition of morphisms is not (strictly) associative, but only associative up to an isomorphism. The notion was introduced in 1967 by Jean Bénabou. Bicategories may be considered as a weakening of the definition of 2-categories. A similar process for 3-categories leads to , and more generally to for . Formally, a bicategory B consists of: a, b, ... called 0-cells; morphisms f, g, .
Transformation naturelleEn théorie des catégories, une transformation naturelle permet de transformer un foncteur en un autre tout en respectant la structure interne (c'est-à-dire la composition des morphismes) des catégories considérées. On peut ainsi la voir comme un morphisme de foncteurs. Soient et deux catégories, F et G deux foncteurs covariants de dans .
MorphismeEn mathématiques, le morphisme est la relative similitude d'objets mathématiques considérés du point de vue de ce qu'ils partagent comme entités ou par leurs relations. En algèbre générale, un morphisme (ou homomorphisme) est une application entre deux structures algébriques de même espèce, c'est-à-dire des ensembles munis de lois de composition interne ou externe (par exemple deux groupes ou deux espaces vectoriels), qui respectent certaines propriétés en passant d'une structure à l'autre.
Théorie des catégoriesLa théorie des catégories est l'étude des structures mathématiques et de leurs relations. Ce domaine est né du constat de l'abondance de caractéristiques partagées par diverses classes liées à des structures mathématiques. Les catégories sont utilisées dans la plupart des branches mathématiques et dans certains secteurs de l'informatique théorique et en mathématiques de la physique. Elles forment une notion unificatrice.
Category (mathematics)In mathematics, a category (sometimes called an abstract category to distinguish it from a ) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the , whose objects are sets and whose arrows are functions. is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent.