Fibré en droitesEn mathématiques, un fibré en droites est une construction qui décrit une droite attachée en chaque point d'un espace. Par exemple, une courbe dans le plan possède une tangente en chaque point, et si la courbe est suffisamment lisse alors la tangente évolue de manière « continue » lorsqu'on se déplace sur la courbe. De manière plus formelle on peut définir un fibré en droites comme un fibré vectoriel de rang 1.
Fibré associéEn géométrie différentielle, un fibré associé est un fibré qui est induit par un -fibré principal et une action du groupe structurel sur un espace auxiliaire. Soient : un groupe de Lie ; une variété différentielle ; un -fibré principal sur ; l'action de groupe à droite de sur ; une action de groupe à gauche de sur une variété différentielle . Définition Le fibré associé à pour est le fibré où est défini par : où la relation d'équivalence est : Remarques Les fibres de sont de fibre type .
Banach manifoldIn mathematics, a Banach manifold is a manifold modeled on Banach spaces. Thus it is a topological space in which each point has a neighbourhood homeomorphic to an open set in a Banach space (a more involved and formal definition is given below). Banach manifolds are one possibility of extending manifolds to infinite dimensions. A further generalisation is to Fréchet manifolds, replacing Banach spaces by Fréchet spaces. On the other hand, a Hilbert manifold is a special case of a Banach manifold in which the manifold is locally modeled on Hilbert spaces.
Variété parallélisableUne variété différentielle M de classe Ck est dite parallélisable si son fibré tangent est trivial, c'est-à-dire isomorphe, en tant que fibré vectoriel, à , où est un espace vectoriel de dimension Il revient au même de dire qu'il existe un espace vectoriel E et une forme différentielle telle que pour tout , est un isomorphisme d'espaces vectoriels ; ou encore qu'il existe champs de vecteurs linéairement indépendants en tout point de M, autrement dit un champ de repères. Un isomorphisme de fibrés vectoriels entre et s'appelle un parallèlisme.
Submersion (mathématiques)En topologie différentielle – une branche des mathématiques –, une submersion ou application submersive entre deux variétés différentielles est une application différentiable dont la différentielle en tout point est surjective. Soient V et W deux variétés différentielles, f une application différentiable de V dans W et x un point de V. On dit que f est une submersion au point x si l'application linéaire tangente Tf(x) est surjective, autrement dit (W étant supposée de dimension finie) : si le rang de Tf(x) est égal à la dimension de W.
Holomorphic vector bundleIn mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : E → X is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle. By Serre's GAGA, the category of holomorphic vector bundles on a smooth complex projective variety X (viewed as a complex manifold) is equivalent to the category of algebraic vector bundles (i.
Cohomologie de ČechLa cohomologie de Čech est une théorie cohomologique, développée à l'origine par le mathématicien Eduard Čech en faisant jouer au nerf d'un recouvrement sur un espace topologique le rôle des simplexes en homologie simpliciale. On peut définir une cohomologie de Čech pour les faisceaux, ou plus généralement pour les objets d'un site, en particulier une catégorie de schémas munie de la topologie de Zariski.
Bundle mapIn mathematics, a bundle map (or bundle morphism) is a morphism in the of fiber bundles. There are two distinct, but closely related, notions of bundle map, depending on whether the fiber bundles in question have a common base space. There are also several variations on the basic theme, depending on precisely which category of fiber bundles is under consideration. In the first three sections, we will consider general fiber bundles in the . Then in the fourth section, some other examples will be given.
Character varietyIn the mathematics of moduli theory, given an algebraic, reductive, Lie group and a finitely generated group , the -character variety of is a space of equivalence classes of group homomorphisms from to : More precisely, acts on by conjugation, and two homomorphisms are defined to be equivalent (denoted ) if and only if their orbit closures intersect. This is the weakest equivalence relation on the set of conjugation orbits, , that yields a Hausdorff space.
Hilbert manifoldIn mathematics, a Hilbert manifold is a manifold modeled on Hilbert spaces. Thus it is a separable Hausdorff space in which each point has a neighbourhood homeomorphic to an infinite dimensional Hilbert space. The concept of a Hilbert manifold provides a possibility of extending the theory of manifolds to infinite-dimensional setting. Analogously to the finite-dimensional situation, one can define a differentiable Hilbert manifold by considering a maximal atlas in which the transition maps are differentiable.