Bundle mapIn mathematics, a bundle map (or bundle morphism) is a morphism in the of fiber bundles. There are two distinct, but closely related, notions of bundle map, depending on whether the fiber bundles in question have a common base space. There are also several variations on the basic theme, depending on precisely which category of fiber bundles is under consideration. In the first three sections, we will consider general fiber bundles in the . Then in the fourth section, some other examples will be given.
Cohomologie de ČechLa cohomologie de Čech est une théorie cohomologique, développée à l'origine par le mathématicien Eduard Čech en faisant jouer au nerf d'un recouvrement sur un espace topologique le rôle des simplexes en homologie simpliciale. On peut définir une cohomologie de Čech pour les faisceaux, ou plus généralement pour les objets d'un site, en particulier une catégorie de schémas munie de la topologie de Zariski.
Théorie de l'obstructionEn mathématiques, la théorie de l'obstruction est le nom donné en fait à plusieurs théories topologiques distinctes dont le but est de déterminer des invariants cohomologiques. Le sens le plus ancien donné à l'expression « théorie de l'obstruction » est, en topologie algébrique, et plus précisément en théorie de l'homotopie, celui d'une procédure, définie par récurrence sur la dimension, permettant de prolonger une application continue définie sur un complexe simplicial, ou sur un CW-complexe.
Circle bundleIn mathematics, a circle bundle is a fiber bundle where the fiber is the circle . Oriented circle bundles are also known as principal U(1)-bundles. In physics, circle bundles are the natural geometric setting for electromagnetism. A circle bundle is a special case of a sphere bundle. Circle bundles over surfaces are an important example of 3-manifolds. A more general class of 3-manifolds is Seifert fiber spaces, which may be viewed as a kind of "singular" circle bundle, or as a circle bundle over a two-dimensional orbifold.
Groupe de jaugeEn géométrie différentielle, le groupe de jauge d'un fibré principal est le sous-groupe du groupe des automorphismes du fibré principal qui envoient ses fibres en elles-mêmes. La notion de groupe de jauge joue un rôle primordial en théorie de jauge. En particulier, son action de groupe sur un espace de formes de connexions donne lieu à la notion d'espace de module de connexions, nécessaire à la définition de l'homologie de Floer d'instantons. Soit un -fibré principal sur une variété différentielle et soit son action de groupe agissant par la droite.
Fibré associéEn géométrie différentielle, un fibré associé est un fibré qui est induit par un -fibré principal et une action du groupe structurel sur un espace auxiliaire. Soient : un groupe de Lie ; une variété différentielle ; un -fibré principal sur ; l'action de groupe à droite de sur ; une action de groupe à gauche de sur une variété différentielle . Définition Le fibré associé à pour est le fibré où est défini par : où la relation d'équivalence est : Remarques Les fibres de sont de fibre type .
Dual bundleIn mathematics, the dual bundle is an operation on vector bundles extending the operation of duality for vector spaces. The dual bundle of a vector bundle is the vector bundle whose fibers are the dual spaces to the fibers of . Equivalently, can be defined as the Hom bundle that is, the vector bundle of morphisms from to the trivial line bundle Given a local trivialization of with transition functions a local trivialization of is given by the same open cover of with transition functions (the inverse of the transpose).
Fiber bundle construction theoremIn mathematics, the fiber bundle construction theorem is a theorem which constructs a fiber bundle from a given base space, fiber and a suitable set of transition functions. The theorem also gives conditions under which two such bundles are isomorphic. The theorem is important in the associated bundle construction where one starts with a given bundle and surgically replaces the fiber with a new space while keeping all other data the same. Let X and F be topological spaces and let G be a topological group with a continuous left action on F.
List of mathematical jargonThe language of mathematics has a vast vocabulary of specialist and technical terms. It also has a certain amount of jargon: commonly used phrases which are part of the culture of mathematics, rather than of the subject. Jargon often appears in lectures, and sometimes in print, as informal shorthand for rigorous arguments or precise ideas. Much of this is common English, but with a specific non-obvious meaning when used in a mathematical sense. Some phrases, like "in general", appear below in more than one section.
Serre spectral sequenceIn mathematics, the Serre spectral sequence (sometimes Leray–Serre spectral sequence to acknowledge earlier work of Jean Leray in the Leray spectral sequence) is an important tool in algebraic topology. It expresses, in the language of homological algebra, the singular (co)homology of the total space X of a (Serre) fibration in terms of the (co)homology of the base space B and the fiber F. The result is due to Jean-Pierre Serre in his doctoral dissertation. Let be a Serre fibration of topological spaces, and let F be the (path-connected) fiber.