Élément symétriqueEn mathématiques, la notion d'élément symétrique généralise les concepts d'opposé en rapport avec l'addition et d'inverse en rapport avec la multiplication. Soit E un ensemble muni d'une loi de composition interne admettant un élément neutre . Soient deux éléments et de E. Si , est dit élément symétrique à gauche de et est dit élément symétrique à droite de . Si , est dit élément symétrique de .
HomomorphismIn algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός () meaning "same" and μορφή () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).
Algèbre généraleL'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
Special classes of semigroupsIn mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ab = ba for all elements a and b in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality.
QuasigroupeEn mathématiques, et plus précisément en algèbre générale, un quasigroupe est un ensemble muni d'une loi de composition interne (un magma) pour laquelle (en pensant cette loi comme une multiplication), il est possible de diviser, à droite comme à gauche, le quotient à droite et le quotient à gauche étant uniques. En d'autre termes l'opération de multiplication à droite est bijective, de même que celle de multiplication à gauche. La loi n'est pas nécessairement associative, et si elle l'est, le quasigroupe est un groupe.
Magma (algèbre)En mathématiques, un magma est une des structures algébriques utilisées en algèbre générale. Un magma est par définition un ensemble muni d'une loi de composition interne. Un magma est un ensemble muni d'une loi de composition interne , noté alors ou simplement . Aucun axiome n'est imposé. La loi de composition peut être notée additivement, multiplicativement, mais aussi sans aucun signe, par simple juxtaposition.
AdditionL'addition est une opération élémentaire, permettant notamment de décrire la réunion de quantités ou l'adjonction de grandeurs extensives de même nature, comme les longueurs, les aires, ou les volumes. En particulier en physique, l'addition de deux grandeurs ne peut s'effectuer numériquement que si ces grandeurs sont exprimées avec la même unité de mesure. Le résultat d'une addition est appelé une somme, et les nombres que l'on additionne, les termes.
MonoïdeEn mathématiques, un monoïde est une structure algébrique utilisée en algèbre générale, définie comme un ensemble muni d'une loi de composition interne associative et d'un élément neutre. Autrement dit, c'est un magma associatif et unifère, c'est-à-dire un demi-groupe unifère. Il arrive parfois qu'une structure composée d'un ensemble et d'une unique opération soit relativement pauvre en éléments inversibles, par exemple un anneau où l'on considère uniquement la multiplication. Une telle structure est appelée monoïde.
Anneau (mathématiques)vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.
AlgèbreL'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).