Espace de TeichmüllerEn mathématiques, l'espace de Teichmüller d'une surface (réelle) topologique (ou différentielle) , est un espace qui paramétrise des structures complexes sur à l'action des homéomorphismes isotopes à l'identité près. Les espaces Teichmüller portent le nom d'Oswald Teichmüller. Chaque point d'un espace de Teichmüller peut être considérée comme une classe d'isomorphismes de surfaces de Riemann "marquées", où un "marquage" est une classe d'isotopie d'homéomorphismes de sur lui-même.
Somme connexeEn mathématiques, et plus précisément en topologie, la somme connexe est une opération qui s'effectue sur des variétés connexes de même dimension. La somme connexe de deux variétés connexes de même dimension n est obtenue en retirant à chacune un petit voisinage d'un point formé d'une boule ouverte, et en recollant les deux variétés ainsi obtenues (techniquement : en prenant l'espace quotient de leur union disjointe) le long des deux sphères Sn–1 apparues.
Surface romaineLa surface romaine (ainsi appelée parce que Jakob Steiner était à Rome quand il l'a conçue) est une application auto-intersectante du plan projectif réel dans l'espace à trois dimensions, avec un haut degré de symétrie. Cette application est localement un plongement topologique, mais n'est pas une immersion (au sens différentiel) du plan projectif ; cependant elle en devient une lorsqu'on enlève de l'image six points singuliers.
Surface de BoyLa surface de Boy, du nom de Werner Boy, mathématicien ayant été le premier à imaginer son existence en 1902, est une immersion du plan projectif réel dans l'espace usuel de dimension 3. Le plan projectif se définit comme l'espace quotient de par la relation d'équivalence qu'est la colinéarité. La surface de Boy peut aussi être « vue » comme une sphère dont on a recollé deux à deux les points antipodaux, ou encore un disque dont on a recollé deux à deux les points diamétralement opposés de son bord.
Formule de Gauss-Bonnetvignette|Exemple d'une surface à laquelle le théorème de Gauss-Bonnet peut être appliqué En géométrie différentielle, la formule de Gauss-Bonnet est une propriété reliant la géométrie (au sens de la courbure de Gauss) et la topologie (au sens de la caractéristique d'Euler) des surfaces. Elle porte le nom des mathématiciens Carl Friedrich Gauss, qui avait conscience d'une version du théorème, mais ne la publia jamais, et Pierre Ossian Bonnet, qui en publia un cas particulier en 1848.
Théorème de plongement de WhitneyEn géométrie différentielle, le théorème de plongement de Whitney fait le lien entre les notions de variété abstraite et de sous-variété de l'espace vectoriel réel Rn : toute variété différentielle de dimension m (à base dénombrable par définition) se plonge dans l'espace euclidien de dimension 2m. Cette valeur 2m peut bien sûr être diminuée dans certains exemples particuliers, comme la sphère. Mais pour l'exemple de l'espace projectif réel de dimension m = 2, la constante 2m est optimale.
Sphère cornue d'AlexanderEn mathématiques, et plus précisément en topologie, la sphère cornue d'Alexander est un célèbre exemple de surface pathologique ; elle fut découverte en 1923 par J. W. Alexander. vignette|Construction animée de la sphère d'Alexandre. Il semble évident qu'une courbe fermée simple (ne se recoupant pas) du plan le découpe en deux régions (l'intérieur et l'extérieur) et qu'on peut déformer la courbe (et les deux régions séparées) pour la transformer en un cercle.
Closed manifoldIn mathematics, a closed manifold is a manifold without boundary that is compact. In comparison, an open manifold is a manifold without boundary that has only non-compact components. The only connected one-dimensional example is a circle. The sphere, torus, and the Klein bottle are all closed two-dimensional manifolds. The real projective space RPn is a closed n-dimensional manifold. The complex projective space CPn is a closed 2n-dimensional manifold. A line is not closed because it is not compact.
Métrique de PoincaréEn mathématiques, et plus précisément en géométrie différentielle, la métrique de Poincaré, due à Henri Poincaré, est le tenseur métrique décrivant une surface de courbure négative constante. C'est la métrique naturelle utilisée pour des calculs en géométrie hyperbolique ou sur des surfaces de Riemann.
Surface implicitevignette|implicit surface torus (R=40, a=15) vignette|implicit surface of genus 2 150px|vignette|implicit non algebraic surface (wineglas) vignette|equipotential surface of 4 point charges 400px|vignette|metamorphoses between two implicit surfaces (torus and a constant distance product surface) 240px|vignette|approximation of three tori (parallel projection) 280px|vignette|PovRay-image (central projection) of an approximation of three tori 400px|vignette|PovRay-Bild: metamorphoses between a sphere and a cons