Action par conjugaisonEn mathématiques, et plus précisément en théorie des groupes, une action par conjugaison est un cas particulier d'action de groupe. L'ensemble sur lequel agit le groupe G est ici G lui-même. En effet, aut∘aut = aut. Les classes de conjugaison sont utilisées pour la démonstration du théorème de Wedderburn stipulant que tout corps fini est commutatif. Dans le cadre de la théorie des représentations d'un groupe fini, les classes de conjugaison sont à la base de la définition des fonctions centrales d'un groupe fini, elles servent à définir l'espace vectoriel, les caractères des représentations.
Relation d'équivalenceEn mathématiques, une relation d'équivalence permet, dans un ensemble, de mettre en relation des éléments qui sont similaires par une certaine propriété. On pourra ainsi regrouper ces éléments par « paquets » d'éléments qui se ressemblent, définissant ainsi la notion de classe d'équivalence, pour enfin construire de nouveaux ensembles en « assimilant » les éléments similaires à un seul et même élément. On aboutit alors à la notion d'ensemble quotient. vignette|upright=1.5|Sur cet ensemble de huit exemplaires de livres, la relation « .
Théorème de Lagrange sur les groupesvignette|Si G est le groupe des entiers modulo 8, alors {0, 4} forme un sous-groupe H. Sur l'exemple, {0, 4} contient 2 éléments et 2 divise 8. En mathématiques, le théorème de Lagrange sur les groupes énonce un résultat élémentaire fournissant des informations combinatoires sur les groupes finis. Le théorème doit son nom au mathématicien Joseph-Louis Lagrange. Il est parfois nommé théorème d'Euler-Lagrange car il généralise un théorème d'Euler sur les entiers.
Morphisme de groupesUn morphisme de groupes ou homomorphisme de groupes est une application entre deux groupes qui respecte la structure de groupe. Plus précisément, c'est un morphisme de magmas d'un groupe dans un groupe , c'est-à-dire une application telle que et l'on en déduit alors que f(e) = e (où e et e désignent les neutres respectifs de G et G) et ∀x ∈ G f(x) = [f(x)]. donc ; en composant par l'inverse de , on obtient (autrement dit, un morphisme de groupes conserve l'idempotence, et l'élément neutre d'un groupe est son unique élément idempotent).
Demi-groupeEn mathématiques, plus précisément en algèbre générale, un demi-groupe (ou semi-groupe) est une structure algébrique constituée d'un ensemble muni d'une loi de composition interne associative. Il est dit commutatif si sa loi est de plus commutative. Un demi-groupe est un magma associatif. Un monoïde est un demi-groupe unifère, c'est-à-dire possédant un élément neutre. L'ensemble des entiers naturels non nuls muni de l'addition est un demi-groupe. Tout monoïde est un demi-groupe. Tout groupe est un demi-groupe.
HomomorphismIn algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός () meaning "same" and μορφή () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).
Groupe abélienEn mathématiques, plus précisément en algèbre, un groupe abélien (du nom de Niels Abel), ou groupe commutatif, est un groupe dont la loi de composition interne est commutative. Vu autrement, un groupe commutatif peut aussi être défini comme un module sur l'anneau commutatif des entiers relatifs ; l'étude des groupes abéliens apparaît alors comme un cas particulier de la théorie des modules. On sait classifier de façon simple et explicite les groupes abéliens de type fini à isomorphisme près, et en particulier décrire les groupes abéliens finis.
Arithmétique modulaireEn mathématiques et plus précisément en théorie algébrique des nombres, l’arithmétique modulaire est un ensemble de méthodes permettant la résolution de problèmes sur les nombres entiers. Ces méthodes dérivent de l’étude du reste obtenu par une division euclidienne. L'idée de base de l'arithmétique modulaire est de travailler non sur les nombres eux-mêmes, mais sur les restes de leur division par quelque chose. Quand on fait par exemple une preuve par neuf à l'école primaire, on effectue un peu d'arithmétique modulaire sans le savoir : le diviseur est alors le nombre 9.
Opération binaireLes opérations en codage binaire sont traitées à l'article Fonction logique. En mathématiques, une opération binaire est une opération à deux arguments ou opérandes. C'est le cas notamment des lois de composition interne sur un ensemble, telle que l'addition des entiers ou la composition de fonctions. Mais une opération partiellement définie comme la division ou la puissance peut également être considérée comme une opération binaire.