Table de CayleyUne table de Cayley est un tableau à double entrée. Lorsqu'un ensemble fini E est muni d'une loi de composition interne •, il est possible de créer un tableau qui présente, pour tous les éléments a et b de E, les résultats obtenus par cette loi • : à l'intersection de la ligne représentant a et de la colonne b se trouve a•b. Le tableau ainsi constitué est appelé table de Cayley du magma (E,•). Cette présentation est semblable à la table de multiplication et à la table d'addition des écoliers.
Classe suivant un sous-groupeEn théorie des groupes, les classes à gauche d'un groupe G suivant un sous-groupe H sont les parties de G de la forme gH avec g élément de G, où gH désigne l'ensemble des éléments gh quand h parcourt H. Elles constituent les classes d'une relation d'équivalence sur G, donc forment une partition de G. On peut les voir aussi comme les orbites de l'action à droite de H sur G, par translations par les symétriques des éléments de H. L'ensemble des classes à gauche d'un groupe G suivant un sous-groupe H est noté G/H.
Sous-groupe normalEn théorie des groupes, un sous-groupe normal (également appelé sous-groupe distingué ou sous-groupe invariantLien web|langue=fr|titre=Introduction à la théorie des groupes et de leurs représentations|auteur=Jean-Bernard Zuber|url=) H d'un groupe G est un sous-groupe globalement stable par l'action de G sur lui-même par conjugaison. Les sous-groupes normaux interviennent naturellement dans la définition du quotient d'un groupe. Les sous-groupes normaux de G sont exactement les noyaux des morphismes définis sur G.
Produit matricielLe produit matriciel désigne la multiplication de matrices, initialement appelé la « composition des tableaux ». Il s'agit de la façon la plus fréquente de multiplier des matrices entre elles. En algèbre linéaire, une matrice A de dimensions m lignes et n colonnes (matrice m×n) représente une application linéaire ƒ d'un espace de dimension n vers un espace de dimension m. Une matrice colonne V de n lignes est une matrice n×1, et représente un vecteur v d'un espace vectoriel de dimension n. Le produit A×V représente ƒ(v).
Module sur un anneauEn mathématiques, et plus précisément en algèbre générale, au sein des structures algébriques, : pour un espace vectoriel, l'ensemble des scalaires forme un corps tandis que pour un module, cet ensemble est seulement muni d'une structure d'anneau (unitaire, mais non nécessairement commutatif). Une partie des travaux en théorie des modules consiste à retrouver les résultats de la théorie des espaces vectoriels, quitte pour cela à travailler avec des anneaux plus maniables, comme les anneaux principaux.
Clôture (mathématiques)On parle de clôture ou de fermeture en mathématiques dans des contextes très divers. Quelques exemples sont listés ci-dessous. En mathématiques, on dit qu'une partie A d'un ensemble E est stable (ou close) pour une opération définie sur E si cette opération, appliquée à des éléments de A, produit toujours un élément de A. Par exemple, l'ensemble des nombres réels est stable par soustraction, tandis que l'ensemble des entiers naturels ne l'est pas (la différence de deux entiers naturels est parfois un entier relatif strictement négatif).
Groupe de permutationsEn théorie des groupes (mathématiques), un groupe de permutations d'un ensemble X est par définition un sous-groupe du groupe symétrique SX. On parle d'un groupe de permutations de X ou, s'il n'est pas nécessaire de préciser l'ensemble X, d'un groupe de permutations. Pour un ensemble X, nous désignerons ici par SX et nous appellerons groupe symétrique de X l'ensemble des permutations de X, muni de la loi de groupe ∘ définie par f ∘ g : X → X, x ↦ f(g(x)). Cette définition convient à l'étude des actions à gauche d'un groupe sur un ensemble.
Groupe (mathématiques)vignette|Les manipulations possibles du Rubik's Cube forment un groupe. En mathématiques, un groupe est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni d'une loi de composition interne associative admettant un élément neutre et, pour chaque élément de l'ensemble, un élément symétrique. La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers relatifs, munis de la loi d'addition.
Groupe finivignette|Un exemple de groupe fini est le groupe des transformations laissant invariant un flocon de neige (par exemple la symétrie par rapport à l'axe horizontal). En mathématiques, un groupe fini est un groupe constitué d'un nombre fini d'éléments. Soit G un groupe. On note en général sa loi multiplicativement et on désigne alors son élément neutre par 1. Toutefois, si G est abélien, la loi est souvent notée additivement et son élément neutre est alors désigné par 0 ; ce n'est cependant pas une règle générale : par exemple, le groupe multiplicatif d'un corps commutatif est noté multiplicativement, bien qu'il soit abélien.
AdditionL'addition est une opération élémentaire, permettant notamment de décrire la réunion de quantités ou l'adjonction de grandeurs extensives de même nature, comme les longueurs, les aires, ou les volumes. En particulier en physique, l'addition de deux grandeurs ne peut s'effectuer numériquement que si ces grandeurs sont exprimées avec la même unité de mesure. Le résultat d'une addition est appelé une somme, et les nombres que l'on additionne, les termes.