Pavage triangulaireIn geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}. English mathematician John Conway called it a deltille, named from the triangular shape of the Greek letter delta (Δ).
Polyèdre isoédriquevignette| Un jeu de dés isoédriques En géométrie, un polytope de dimension 3 (un polyèdre) ou plus est dit isoédrique lorsque ses faces sont identiques. Plus précisément, toutes les faces ne doivent pas être simplement isométriques, mais doivent être transitives, c'est-à-dire qu'elles doivent se trouver dans la même orbite de symétrie. En d'autres termes, pour toutes les faces A et B, il doit y avoir une symétrie de l'ensemble du solide par rotations et réflexions qui envoie A sur B.
Coloration uniformelien=//upload.wikimedia.org/wikipedia/commons/thumb/2/27/Square_tiling_uniform_colorings.png/240px-Square_tiling_uniform_colorings.png|vignette|240x240px| Le pavage carré possède 9 colorations uniformes :1111, 1112(a), 1112(b),1122, 1123(a), 1123(b),1212, 1213, 1234. En géométrie, une coloration uniforme est une propriété d'une figure uniforme ( pavage uniforme (en) ou polyèdre uniforme ) qui est colorée pour être isogonale. Différentes symétries peuvent être présentes sur une figure géométrique ayant des faces colorées suivant différents motifs uniformes de couleurs.
Construction de WythoffEn géométrie, une construction de Wythoff, nommée en l'honneur du mathématicien Willem Abraham Wythoff, est une méthode pour construire un polyèdre uniforme ou un pavage plan. On l'appelle souvent construction kaléidoscopique de Wythoff. Elle repose sur le pavage d'une sphère, avec des triangles sphériques. Si trois miroirs sont placés de telle manière que leurs plans se coupent en un point unique, alors les miroirs entourent un triangle sphérique sur la surface d'une sphère quelconque centrée en ce point et par réflexions répétées, on obtient une multitude de copies du triangle.
Pavage carré tronquéIn geometry, the truncated square tiling is a semiregular tiling by regular polygons of the Euclidean plane with one square and two octagons on each vertex. This is the only edge-to-edge tiling by regular convex polygons which contains an octagon. It has Schläfli symbol of t{4,4}. Conway calls it a truncated quadrille, constructed as a truncation operation applied to a square tiling (quadrille). Other names used for this pattern include Mediterranean tiling and octagonal tiling, which is often represented by smaller squares, and nonregular octagons which alternate long and short edges.
List of Euclidean uniform tilingsThis table shows the 11 convex uniform tilings (regular and semiregular) of the Euclidean plane, and their dual tilings. There are three regular and eight semiregular tilings in the plane. The semiregular tilings form new tilings from their duals, each made from one type of irregular face. John Conway called these uniform duals Catalan tilings, in parallel to the Catalan solid polyhedra. Uniform tilings are listed by their vertex configuration, the sequence of faces that exist on each vertex. For example 4.
Configuration de sommetEn géométrie, une configuration de sommet est une notation abrégée pour représenter la figure de sommet d'un polyèdre ou d'un pavage comme la séquence de faces autour d'un sommet. Pour les polyèdres uniformes, il n'y a qu'un seul type de sommet et, par conséquent, la configuration des sommets définit entièrement le polyèdre. (Les polyèdres chiraux existent dans des paires d'images miroir avec la même configuration de sommet). Une configuration de sommet est donnée sous la forme d'une suite de nombres représentant le nombre de côtés des faces faisant le tour du sommet.
Pavage carré adouciIn geometry, the snub square tiling is a semiregular tiling of the Euclidean plane. There are three triangles and two squares on each vertex. Its Schläfli symbol is s{4,4}. Conway calls it a snub quadrille, constructed by a snub operation applied to a square tiling (quadrille). There are 3 regular and 8 semiregular tilings in the plane. There are two distinct uniform colorings of a snub square tiling. (Naming the colors by indices around a vertex (3.3.4.3.4): 11212, 11213.
Diagramme de Coxeter-DynkinEn géométrie, un diagramme de Coxeter-Dynkin est un graphe représentant un ensemble relationnel de miroirs (ou d'hyperplans de réflexion) dans l'espace pour une construction kaléidoscopique. En tant que graphe lui-même, le diagramme représente les groupes de Coxeter, chaque nœud du graphe représente un miroir (facette du domaine) et chaque branche du graphe représente l'ordre de l'angle diédral entre deux miroirs (sur une arête du domaine). En plus, les graphes ont des anneaux (cercles) autour des nœuds pour les miroirs actifs représentant un polytope précis.
Uniform tilingIn geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra which can be considered uniform tilings of the sphere. Most uniform tilings can be made from a Wythoff construction starting with a symmetry group and a singular generator point inside of the fundamental domain.