Corps résiduelUn corps résiduel d'un anneau commutatif R est le quotient de R par un idéal maximal. S'agissant d'un idéal maximal, l'anneau issu du quotient a une structure de corps. Le concept est avant tout utilisé en géométrie algébrique et en théorie algébrique des nombres, où l'on travaille le plus souvent avec un anneau local ou un anneau de valuation discrète, qui ne possède qu'un idéal maximal et permet donc de parler « du » corps résiduel. On peut opérer le quotient sur un anneau non commutatif, mais on obtient alors un corps gauche.
Endomorphisme de FrobeniusEn mathématiques, l'endomorphisme de Frobenius, nommé ainsi en l'honneur de Georg Ferdinand Frobenius, est un endomorphisme d'anneau commutatif défini de façon naturelle à partir de la caractéristique. Il est particulièrement utilisé dans le contexte de la théorie de Galois, soit dans le cas des corps de caractéristique non nulle et plus spécifiquement dans le cas des corps finis et dans la théorie des corps de classes. Si le corps est fini, il s'agit alors d'un automorphisme.
Cohomologie galoisienneEn mathématiques, la cohomologie galoisienne est l'étude de l'action d'un groupe de Galois sur certains groupes, par des méthodes cohomologiques. Elle permet d'obtenir des résultats à la fois sur le groupe de Galois agissant, et sur le groupe sur lequel il agit. En particulier, le groupe de Galois d'une extension de corps de nombres L/K agit naturellement par exemple sur le groupe multiplicatif L, mais aussi sur le groupe des unités de l'anneau des entiers du corps L, ou sur son groupe des classes.
Fonction zêta de DedekindEn mathématiques, la fonction zêta de Dedekind est une série de Dirichlet définie pour tout corps de nombres K. C'est la fonction de la variable complexe s définie par la somme infinie : prise sur tous les idéaux I non nuls de l'anneau O des entiers de K, où N(I) désigne la norme de I (relative au corps Q des rationnels). Cette norme est égale au cardinal de l'anneau quotient O/I. En particulier, ζ est la fonction zêta de Riemann. Les propriétés de la fonction méromorphe ζ ont une signification considérable en théorie algébrique des nombres.
Adelic algebraic groupIn abstract algebra, an adelic algebraic group is a semitopological group defined by an algebraic group G over a number field K, and the adele ring A = A(K) of K. It consists of the points of G having values in A; the definition of the appropriate topology is straightforward only in case G is a linear algebraic group. In the case of G being an abelian variety, it presents a technical obstacle, though it is known that the concept is potentially useful in connection with Tamagawa numbers.
Décomposition des idéaux premiers dans les extensions galoisiennesEn mathématiques, l'interaction entre le groupe de Galois G d'une extension galoisienne de corps de nombres L/K (ou de corps de nombres p-adiques, ou de corps de fonctions), et la manière dont les idéaux premiers de l'anneau O des entiers se décomposent sous forme de produits d'idéaux premiers de O, est à la base de nombreux développements fructueux en théorie algébrique des nombres. Le cas d'une extension non nécessairement galoisienne est traitée dans l'article « Décomposition des idéaux premiers ».
Idéal principalEn mathématiques, plus particulièrement dans la théorie des anneaux, un idéal principal est un idéal engendré par un seul élément. Soit A un anneau. Un idéal à droite I est dit principal à droite s'il est égal à l'idéal à droite engendré par un élément a, c'est-à-dire si I = aA := { ax | x ∈ A }. Un idéal à gauche I est dit principal à gauche s'il est égal à l'idéal à gauche engendré par un élément a, c'est-à-dire si I = Aa := { xa | x ∈ A }.
Corps localEn mathématiques, un corps local est un corps commutatif topologique localement compact pour une topologie non discrète. Sa topologie est alors définie par une valeur absolue. Les corps locaux interviennent de façon fondamentale en théorie algébrique des nombres. Si k est un corps fini, le corps k((X)) des séries formelles de Laurent à coefficients dans k est un corps local. Tout complété d'un corps de nombres (ou plus généralement un corps global) pour une valuation non triviale est un corps local.
Lemme de HenselEn mathématiques, le lemme de Hensel, est un résultat permettant de déduire l'existence d'une racine d'un polynôme à partir de l'existence d'une solution approchée. Il doit son nom au mathématicien du début du Kurt Hensel. Sa démonstration est analogue à celle de la méthode de Newton. La notion d'anneau hensélien regroupe les anneaux dans lesquels le lemme de Hensel s'applique. Les exemples les plus usuels sont Z (l'anneau des entiers p-adiques, pour p un nombre premier) et k[[t]] (l'anneau des séries formelles sur un corps k) ou plus généralement, les anneaux de valuation discrète complets.
Théorie algébrique des nombresEn mathématiques, la théorie algébrique des nombres est la branche de la théorie des nombres utilisant des outils issus de l'algèbre. Son origine est l'étude des nombres entiers et particulièrement les équations diophantiennes. Pour en résoudre certaines, il est utile de considérer d'autres entiers, dits algébriques. Un exemple est donné par le théorème des deux carrés de Fermat utilisant les entiers de Gauss. Ces ensembles sont équipés de deux lois — une addition et une multiplication — qui vérifient les mêmes propriétés élémentaires que les entiers relatifs : on parle d'anneaux.