Spectre (topologie)En topologie algébrique, une branche des mathématiques, un spectre est un objet représentant une théorie cohomologique généralisée (qui découle du ). Cela signifie que, étant donné une théorie de cohomologie,il existe des espaces tels que l'évaluation de la théorie cohomologique en degré sur un espace équivaut à calculer les classes d'homotopie des morphismes à l'espace , soit encore.Remarquons qu'il existe plusieurs catégories de spectres différentes conduisant à de nombreuses difficultés techniques, mais ils déterminent tous la même , connue sous le nom de catégorie d'homotopie stable.
Théorème de suspension de FreudenthalLe théorème de suspension de Freudenthal est un théorème de mathématiques démontré en 1937 par Hans Freudenthal. C'est un résultat fondamental sur l'homotopie, qui explique le comportement des groupes d'homotopie d'un espace pointé lorsqu'on en prend la suspension et qui conduit à la théorie de l'homotopie stable. Soit X un CW-complexe pointé n-connexe. L'application X → Ω(X ∧ S), où Ω désigne le foncteur espace des lacets et ∧ le smash-produit, induit un morphisme de groupesπ(X) → π(Ω(X ∧ S)) ≃ π(X ∧ S).
Théorie de l'homotopieLa théorie de l'homotopie est une branche des mathématiques issue de la topologie algébrique dans laquelle les espaces et applications sont considérés à homotopie près. La notion topologique de déformation est étendue à des contextes algébriques notamment via les structures de complexe différentiel puis d’algèbre A. Étant donné deux équivalences d’homotopie f : X′ → X et g : Y → Y′, l’ensemble des classes d'homotopie des applications continues entre X et Y s’identifie à celui des applications entre X′ et Y′ par composition avec f et g.
Groupes d'homotopie des sphèresEn mathématiques, et plus spécifiquement en topologie algébrique, les groupes d'homotopie des sphères sont des invariants qui décrivent, en termes algébriques, comment des sphères de dimensions et égales ou différentes peuvent s'enrouler l'une sur l'autre. La notion, définie au départ pour des sphères de dimension 1 (cercles) et de dimension 2, se généralise à des sphères de toutes dimensions (les -sphères).
Tour de PostnikovEn théorie de l'homotopie, une branche de la topologie algébrique, une tour de Postnikov (ou système de Postnikov) est un objet permettant de reconstruire un espace topologique à partir de ses groupes d'homotopie. Une tour de Postnikov pour un espace X connexe par arcs est un morphisme de X vers une suite d'espaces et d'applications continues, ...→ X →...→ X→ X, tel que chaque application X→X induit des isomorphismes des π pour k ≤ n ; π(X) = 0 pour k > n. Tout CW-complexe connexe possède une telle « tour ».
Adams spectral sequenceIn mathematics, the Adams spectral sequence is a spectral sequence introduced by which computes the stable homotopy groups of topological spaces. Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a reformulation using homological algebra, and an extension, of a technique called 'killing homotopy groups' applied by the French school of Henri Cartan and Jean-Pierre Serre. For everything below, once and for all, we fix a prime p.
Suspension (mathématiques)En mathématiques, la suspension est une construction topologique définie par écrasement des extrémités d'un cylindre. Elle permet notamment de définir les sphères S par récurrence. Si l'espace topologique est pointé, sa suspension réduite est le quotient de la suspension par le cylindre sur le point de base, c'est un espace pointé avec un point base canonique. La suspension est un foncteur de la catégorie des espaces topologiques (pointés ou non) dans elle-même.
Espace pointéEn topologie, un espace pointé est un espace topologique dont on spécifie un point particulier comme étant le point de base. Formellement, il s'agit donc d'un couple (E, x) pour lequel x est un élément de E. Une application pointée entre deux espaces pointés est une application continue préservant les points de base. Les espaces pointés sont les objets d'une catégorie, notée parfois Top, dont les morphismes sont les applications pointées. Cette catégorie admet le point comme objet nul.
FibrationEn théorie de l'homotopie, une fibration est une application continue entre espaces topologiques satisfaisant une propriété de relèvement des homotopies, qui est satisfaite en général par les projections fibrées. Les fibrations de Serre relèvent les homotopies depuis les CW-complexes tandis que les fibrations de Hurewicz relèvent les homotopies depuis n'importe quel espace topologique.
Frank AdamsJohn Frank Adams ( – ) est un mathématicien britannique, l'un des fondateurs de la théorie de l'homotopie. Frank Adams est né à Woolwich, dans la banlieue sud-est de Londres. Il commence ses recherches au Trinity College de Cambridge auprès d'Abram Besicovitch, mais se réoriente rapidement vers la topologie algébrique. En 1956, il soutient à Cambridge un Ph. D., dirigé par Shaun Wylie et devient Fellow du Trinity. Une bourse lui permet de faire un séjour à l'université de Chicago et à l'IAS (Institute for Advanced Study) en 1957-1958 et il séjourne de nouveau à l'IAS en 1961.