Transformation conformeEn mathématiques, et plus précisément en géométrie et en analyse complexe, une transformation conforme est une bijection qui conserve localement les angles, c'est-à-dire qui se comporte au voisinage de chaque point où elle est définie presque comme une similitude. Dans le plan, les transformations conformes qui conservent les angles orientés ont une telle utilité qu'il est fréquent qu'elles soient les seules baptisées du terme de conformes. Elles se confondent alors avec les bijections holomorphes.
Similitude (géométrie)En géométrie euclidienne, une similitude est une transformation qui multiplie toutes les distances par une constante fixe, appelée son rapport. L' de toute figure par une telle application est une figure semblable, c'est-à-dire intuitivement « de même forme ». thumb|300px|Dans ce dessin, les objets de même couleur sont semblables. Les isométries, c'est-à-dire les transformations qui conservent les distances sont des cas particuliers de similitudes ; elles transforment des figures en des figures de même forme et de même taille.
Géométrie finieUne géométrie finie est un système géométrique dont les points sont en nombre fini. La géométrie euclidienne usuelle n'est pas finie, une droite euclidienne possédant une infinité de points. Une géométrie basée sur les images affichées sur un écran d'ordinateur, où les pixels sont considérés comme des points, serait une géométrie finie. Bien qu'il existe de nombreux systèmes que l'on pourrait appeler des géométries finies, on porte principalement l'attention sur les espaces projectifs et affines finis en raison de leur régularité et de leur simplicité.
Involution (mathématiques)En mathématiques, une involution est une application bijective qui est sa propre réciproque, c'est-à-dire par laquelle chaque élément est l'image de son image. C'est le cas par exemple du changement de signe dans l'ensemble des nombres réels, ou des symétries du plan ou de l'espace en géométrie euclidienne. En algèbre linéaire, les endomorphismes involutifs sont d'ailleurs appelés symétries. Des involutions apparaissent dans de nombreux domaines des mathématiques, notamment en combinatoire et en topologie.
Kleinian groupIn mathematics, a Kleinian group is a discrete subgroup of the group of orientation-preserving isometries of hyperbolic 3-space H3. The latter, identifiable with PSL(2, C), is the quotient group of the 2 by 2 complex matrices of determinant 1 by their center, which consists of the identity matrix and its product by −1. PSL(2, C) has a natural representation as orientation-preserving conformal transformations of the Riemann sphere, and as orientation-preserving conformal transformations of the open unit ball B3 in R3.
Disque de PoincaréEn géométrie, le disque de Poincaré (appelé aussi représentation conforme) est un modèle du plan hyperbolique, ou plus généralement de la géométrie hyperbolique à n dimensions, où les points sont situés dans la boule unité ouverte de dimension n et les droites sont soit des arcs de cercles contenus dans cette boule et orthogonaux à sa frontière, soit des diamètres de la boule. En plus du modèle de Klein et du demi-plan de Poincaré, il a été proposé par Eugenio Beltrami pour démontrer que la consistance de la géométrie hyperbolique était équivalente à la consistance de la géométrie euclidienne.
Modèle de KleinEn mathématiques, et plus précisément en géométrie non euclidienne, le 'modèle de Beltrami-Klein, également appelé modèle projectif ou modèle du disque de Klein', est un modèle de géométrie hyperbolique de dimension n dans lequel l'espace hyperbolique est modélisé par la boule unité euclidienne ouverte de rayon 1 de dimension n, les points de l'espace hyperbolique étant les points de la boule unité, et les droites de l'espace hyperbolique étant les cordes de la boule unité.
Liouville's theorem (conformal mappings)In mathematics, Liouville's theorem, proved by Joseph Liouville in 1850, is a rigidity theorem about conformal mappings in Euclidean space. It states that any smooth conformal mapping on a domain of Rn, where n > 2, can be expressed as a composition of translations, similarities, orthogonal transformations and inversions: they are Möbius transformations (in n dimensions). This theorem severely limits the variety of possible conformal mappings in R3 and higher-dimensional spaces.
Division harmoniqueEn géométrie affine, quatre points alignés sont en division harmonique quand ils vérifient l'égalité des rapports de mesure algébrique indiquée ci-contre. Elle apparait naturellement dans plusieurs figures géométriques, par exemple le quadrilatère complet. C'est plus fondamentalement une notion de géométrie projective, puisqu'il s'agit d'exprimer qu'un birapport vaut –1.
Möbius planeIn mathematics, the classical Möbius plane (named after August Ferdinand Möbius) is the Euclidean plane supplemented by a single point at infinity. It is also called the inversive plane because it is closed under inversion with respect to any generalized circle, and thus a natural setting for planar inversive geometry. An inversion of the Möbius plane with respect to any circle is an involution which fixes the points on the circle and exchanges the points in the interior and exterior, the center of the circle exchanged with the point at infinity.