Résumé
En mathématiques, et plus précisément en analyse, l’inégalité de Jensen est une relation utile et très générale concernant les fonctions convexes, due au mathématicien danois Johan Jensen et dont il donna la preuve en 1906. On peut l'écrire de deux manières : discrète ou intégrale. Elle apparaît notamment en analyse, en théorie de la mesure et en probabilités (théorème de Rao-Blackwell), mais également en physique statistique, en mécanique quantique et en théorie de l'information (sous le nom d'inégalité de Gibbs). L'inégalité reste vraie pour les fonctions concaves, en inversant le sens. C'est notamment le cas pour la fonction logarithme, très utilisée en physique. De nombreux résultats élémentaires importants d'analyse s'en déduisent, comme l'inégalité arithmético-géométrique : si (x1, ... , xn) est un n-uplet de réels strictement positifs, alors : Cet énoncé a un sens car sous ces hypothèses, l'intégrale de g appartient à [a, b] et φ ∘ g est continue sur [0, 1] donc intégrable. Cet énoncé a un sens car sous ces hypothèses, l'intégrale de g appartient à I. Lorsque φ est strictement convexe, les deux membres de cette inégalité sont égaux (si et) seulement si g est constante μ-presque partout. De ce théorème on déduit, soit directement, soit via l'inégalité de Hölder, une relation importante entre les espaces L associés à une mesure finie de masse totale M ≠ 0 : avec égalité si et seulement si est constante presque partout. L'énoncé ci-dessus se transcrit dans le langage de la théorie des probabilités et de la statistique : On peut alors en déduire un résultat important de statistique : le théorème de Rao-Blackwell. En effet, si L est une fonction convexe, alors d'après l'inégalité de Jensen, Si δ(X) est un estimateur d'un paramètre non observé θ étant donné un vecteur X des observables, et si T(X) est une statistique suffisante pour θ, alors un estimateur plus performant, dans le sens de la minimisation des pertes, est donné par : C'est-à-dire l'espérance de δ par rapport à θ, prise sur tous les vecteurs X compatibles avec la même valeur de T(X).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (16)
Moment (probabilités)
En théorie des probabilités et en statistique, les moments d’une variable aléatoire réelle sont des indicateurs de la dispersion de cette variable. Le premier moment ordinaire, appelé moment d'ordre 1 est l'espérance (i.e la moyenne) de cette variable. Le deuxième moment centré d'ordre 2 est la variance. Ainsi, l'écart type est la racine carrée du moment centré d’ordre 2. Le moment d'ordre 3 est l'asymétrie. Le moment d'ordre 4 est le kurtosis. Le concept de moment est proche du concept de moment en physique.
Espérance conditionnelle
En théorie des probabilités, l'espérance conditionnelle d'une variable aléatoire réelle donne la valeur moyenne de cette variable quand un certain événement est réalisé. Selon les cas, c'est un nombre ou alors une nouvelle variable aléatoire. On parle alors d'espérance d'une variable aléatoire conditionnée par un événement B est, intuitivement, la moyenne que l'on obtient si on renouvelle un grand nombre de fois l'expérience liée à la variable aléatoire et que l'on ne retient que les cas où l'événement B est réalisé.
Inégalité de Hölder
En analyse, l’inégalité de Hölder, ainsi nommée en l'honneur de Otto Hölder, est une inégalité fondamentale relative aux espaces de fonctions , comme les espaces de suites . C'est une généralisation de l'inégalité de Cauchy-Schwarz. Il existe une formulation de l'inégalité utilisée en mathématiques discrètes. Plus généralement, pour et défini par , si et alors et . De plus, lorsque et sont finis, il y a égalité si et seulement si et sont colinéaires presque partout (p.p.), c'est-à-dire s’il existe et non simultanément nuls tels que p.
Afficher plus