Multiplicité (mathématiques)En mathématiques, on définit pour certaines propriétés la multiplicité d'une valeur ayant cette propriété. Il s'agit en général d'un nombre naturel qui indique « combien de fois » la valeur possède la propriété. Cela est dépourvu de sens en général (on possède une propriété ou on ne la possède pas), mais une interprétation naturelle existe dans certains cas. En général une propriété pour laquelle des multiplicités sont définies détermine un multiensemble de valeurs plutôt qu'un simple ensemble.
Hyperplane at infinityIn geometry, any hyperplane H of a projective space P may be taken as a hyperplane at infinity. Then the set complement P ∖ H is called an affine space. For instance, if (x1, ..., xn, xn+1) are homogeneous coordinates for n-dimensional projective space, then the equation xn+1 = 0 defines a hyperplane at infinity for the n-dimensional affine space with coordinates (x1, ..., xn). H is also called the ideal hyperplane. Similarly, starting from an affine space A, every class of parallel lines can be associated with a point at infinity.
Plan affineEn géométrie le concept de plan affine a été inventé pour pouvoir parler de droites parallèles sans s'encombrer de notions métriques telles que la distance entre deux points ou l'angle entre deux droites. L'approche axiomatique ne présuppose pas la notion d'espace vectoriel, de plan vectoriel en l'occurrence, ni celle de corps commutatif. Cependant ces deux dernières notions sont sous-jacentes (voir plan affine de Desargues). Un plan affine vérifie les axiomes Il existe au moins 2 points.
Déplacement (géométrie)In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory. A displacement may be identified with the translation that maps the initial position to the final position.
Playfair's axiomIn geometry, Playfair's axiom is an axiom that can be used instead of the fifth postulate of Euclid (the parallel postulate): In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the point. It is equivalent to Euclid's parallel postulate in the context of Euclidean geometry and was named after the Scottish mathematician John Playfair. The "at most" clause is all that is needed since it can be proved from the remaining axioms that at least one parallel line exists.
Ordered geometryOrdered geometry is a form of geometry featuring the concept of intermediacy (or "betweenness") but, like projective geometry, omitting the basic notion of measurement. Ordered geometry is a fundamental geometry forming a common framework for affine, Euclidean, absolute, and hyperbolic geometry (but not for projective geometry). Moritz Pasch first defined a geometry without reference to measurement in 1882. His axioms were improved upon by Peano (1889), Hilbert (1899), and Veblen (1904).
Forme bilinéaire symétriqueEn algèbre linéaire, une forme bilinéaire symétrique est une forme bilinéaire qui est symétrique. Les formes bilinéaires symétriques jouent un rôle important dans l'étude des quadriques. Soit V un espace vectoriel de dimension n sur un corps commutatif K. Une application est une forme bilinéaire symétrique sur l'espace si () : Les deux derniers axiomes impliquent seulement la linéarité par rapport à la « première variable » mais le premier permet d'en déduire la linéarité par rapport à la « deuxième variable ».
Fibré associéEn géométrie différentielle, un fibré associé est un fibré qui est induit par un -fibré principal et une action du groupe structurel sur un espace auxiliaire. Soient : un groupe de Lie ; une variété différentielle ; un -fibré principal sur ; l'action de groupe à droite de sur ; une action de groupe à gauche de sur une variété différentielle . Définition Le fibré associé à pour est le fibré où est défini par : où la relation d'équivalence est : Remarques Les fibres de sont de fibre type .
Fiber (mathematics)In mathematics, the term fiber (US English) or fibre (British English) can have two meanings, depending on the context: In naive set theory, the fiber of the element in the set under a map is the of the singleton under In algebraic geometry, the notion of a fiber of a morphism of schemes must be defined more carefully because, in general, not every is closed. Let be a function between sets. The fiber of an element (or fiber over ) under the map is the set that is, the set of elements that get mapped to by the function.
Plane at infinityIn projective geometry, a plane at infinity is the hyperplane at infinity of a three dimensional projective space or to any plane contained in the hyperplane at infinity of any projective space of higher dimension. This article will be concerned solely with the three-dimensional case. There are two approaches to defining the plane at infinity which depend on whether one starts with a projective 3-space or an affine 3-space. If a projective 3-space is given, the plane at infinity is any distinguished projective plane of the space.