Gregorio Ricci-CurbastroGregorio Ricci-Curbastro (né le à Lugo, dans la province de Ravenne, en Émilie-Romagne et mort le à Bologne) est un mathématicien italien de la fin du et du début du . Spécialiste de la géométrie différentielle, il est l'un des pères du calcul tensoriel. Ricci-Curbastro étudia dès l'âge de seize ans la philosophie et les mathématiques à l'Université de Rome, publiant même un article sur les « Recherches de Fuchs sur les équations différentielles linéaires » ; après une période d'interruption, il les poursuivit à l’Université de Bologne (1872) et l’École normale supérieure de Pise dont il sortit diplômé (1875).
Rang (algèbre linéaire)En algèbre linéaire : le rang d'une famille de vecteurs est la dimension du sous-espace vectoriel engendré par cette famille. Par exemple, pour une famille de vecteurs linéairement indépendants, son rang est le nombre de vecteurs ; le rang d'une application linéaire de dans est la dimension de son , qui est un sous-espace vectoriel de . Le théorème du rang relie la dimension de , la dimension du noyau de et le rang de ; le rang d'une matrice est le rang de l'application linéaire qu'elle représente, ou encore le rang de la famille de ses vecteurs colonnes ; le rang d'un système d'équations linéaires est le nombre d'équations que compte tout système échelonné équivalent.
Notation en indice abstraitLa notation en indice abstrait est un système de notation présentant des similarités avec la convention de sommation d'Einstein et destinée comme cette dernière à l'écriture du calcul tensoriel. Cette notation, due au mathématicien Roger Penrose, a pour but l'écriture pratique d'équations dans lesquelles interviennent des tenseurs ou des champs tensoriels. Il s'agit à la fois : de bénéficier de la simplicité d'écriture permise par la convention de sommation d'Einstein ; de ne pas dépendre contrairement à la convention d'Einstein d'un choix de base particulier (et donc arbitraire).
Finite strain theoryIn continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically-deforming materials and other fluids and biological soft tissue.
Tensor densityIn differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another (see tensor field), except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density.
Tullio Levi-CivitaTullio Levi-Civita ( à Padoue, Italie – à Rome) est un mathématicien italien. Il est connu principalement pour son travail sur le calcul tensoriel et ses applications en théorie de la relativité. Il fut l'assistant de Gregorio Ricci-Curbastro, avec qui il inventa le calcul tensoriel. Ses travaux incluent aussi des articles fondamentaux en mécanique céleste (notamment sur le problème des trois corps) et l'hydrodynamique. Né à Padoue, Levi-Civita était le fils de Giacomo Levi-Civita, un avocat qui fut sénateur.
Tenseur antisymétriqueEn mathématiques et physique théorique, un tenseur est antisymétrique pour les indices i et j si son signe est interchangé lorsqu'on inverse 2 indices : Un tenseur antisymétrique est un tenseur possédant 2 indices pour lesquels il est antisymétrique. Si un tenseur change de signe dès que 2 indices quelconques sont inversés, alors ce tenseur est dit complètement antisymétrique et est aussi nommé forme différentielle. Un tenseur A qui est antisymétrique pour les indices i et j possède la propriété que sa contraction avec un tenseur B, symétrique pour les indices i et j, est identiquement nulle.
Elwin Bruno ChristoffelElwin Bruno Christoffel (1829-1900) est un mathématicien et physicien allemand. Il étudie à l'université Humboldt de Berlin, notamment avec Dirichlet. Il soutient une thèse sur la propagation de l'électricité dans les corps homogènes en 1856. En 1859, Christoffel devient Privat-docent à l'université de Berlin. En 1862, il est nommé à l'École polytechnique fédérale de Zurich où il occupe la chaire laissée vacante par le départ de Dedekind.
Calcul tensorielEn physique théorique, des équations différentielles, posées en termes de champs tensoriels, sont une manière très générale pour exprimer les relations à la fois géométriques par nature et liées au calcul différentiel. Pour formuler de telles équations, il faut connaître la dérivée covariante. Cela permet d'exprimer la variation d'un champ tensoriel le long d'un champ vectoriel. La notion d'origine du calcul différentiel absolu, plus tard renommé calcul tensoriel, amena à l'isolation du concept géométrique de connexion.
Tangent vectorIn mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in Rn. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of germs. Formally, a tangent vector at the point is a linear derivation of the algebra defined by the set of germs at .