Espace des positions et espace des momentsEn physique et en géométrie, espace des positions et espace des moments sont deux espaces vectoriels étroitement liés, souvent tridimensionnels, mais en général pouvant être de toute dimension finie. L'espace des positions (également espace réel ou espace des coordonnées) est l'ensemble de tous les vecteurs de position , qui ont les dimensions d'une longueur ; un vecteur de position définit un point dans l'espace (si le vecteur position d'une particule ponctuelle varie avec le temps, il tracera un chemin, la trajectoire d'une particule).
Représentation de SchrödingerEn mécanique quantique, la représentation de Schrödinger est une des trois formulations et modes de traitement des problèmes dépendant du temps dans le cadre de la mécanique quantique classique. Dans cette représentation, l'état d'un système évolue avec le temps. Le principe de superposition quantique stipule qu'une fonction d'état est en général une combinaison linéaire d'états propres.
Born ruleThe Born rule (also called Born's rule) is a postulate of quantum mechanics which gives the probability that a measurement of a quantum system will yield a given result. In its simplest form, it states that the probability density of finding a system in a given state, when measured, is proportional to the square of the amplitude of the system's wavefunction at that state. It was formulated by German physicist Max Born in 1926.
Opérateur de positionEn physique quantique, l'opérateur de position ou opérateur de localisation est l'opérateur qui formalise l'observable position de l'état quantique d'une particule. Dans une dimension, le carré du module de la fonction d'onde représente la densité de probabilité de trouver la particule à la position . La valeur moyenne ou l'espérance mathématique d'une mesure de la position de la particule est alors En conséquence, l'opérateur qui correspond à la position est , où L'accent circonflexe au-dessus du x à gauche indique un opérateur, de sorte que cette équation peut être lue comme Le résultat de l'action de l'opérateur x sur une fonction quelconque ψ(x) égale x multiplié par ψ(x).
État stationnaire (physique quantique)En physique quantique comme dans le cas classique, un état stationnaire est un état qui n’évolue pas dans le temps. Cependant la description mathématique des états est un peu différente. Dans le cas d’un vecteur de norme 1 dans un espace de Hilbert, il peut y avoir un « changement de phase » (dans le sens multiplication par un nombre complexe de module 1). Par ailleurs, s’il est caractérisé par une fonction d’onde alors sa densité de probabilité est indépendante du temps.
Nombre quantiqueLes nombres quantiques sont des ensembles de nombres définissant l'état quantique d'un système. Chacun de ces nombres définit la valeur d'une quantité conservée dans la dynamique d'un système quantique. Ce sont des nombres entiers ou demi-entiers, de sorte que les grandeurs observables correspondantes sont quantifiées et ne peuvent prendre que des valeurs discrètes : c'est une différence fondamentale entre la mécanique quantique et la mécanique classique, dans laquelle toutes ces grandeurs peuvent prendre des valeurs continues.
Problème de la mesure quantiqueLe problème de la mesure quantique consiste en un ensemble de problèmes, qui mettent en évidence des difficultés de corrélation entre les postulats de la mécanique quantique et le monde macroscopique tel qu'il nous apparaît ou tel qu'il est mesuré.
Mécanique quantique relationnelleLa mécanique quantique relationnelle (MQR) est une interprétation de la mécanique quantique qui traite l'état d'un système quantique comme étant dépendant de l'observateur, c'est-à-dire que l'état est la relation entre l'observateur et le système. Cette interprétation a été décrite pour la première fois par Carlo Rovelli en 1994, et a été développée depuis par un certain nombre de théoriciens. Elle s'inspire d'une idée clé de la relativité restreinte, selon laquelle les détails d'une observation dépendent du cadre de référence de l'observateur, et utilise certaines idées de Wheeler sur l'information quantique .
Matrice densitéEn physique quantique, la matrice densité, souvent représentée par , est un objet mathématique introduit par le mathématicien et physicien John von Neumann permettant de décrire l'état d'un système physique. Elle constitue une généralisation de la formulation d'un état physique à l'aide d'un ket , en permettant de décrire des états plus généraux, appelés mélanges statistiques, que la précédente formulation ne permettait pas de décrire.
Sphère de Blochvignette|droite|L'état d'un système à deux niveaux, tel qu'un spin 1/2 ou plus généralement un qubit, peut être représenté par un point sur une sphère. La sphère de Bloch, du nom du physicien et mathématicien Félix Bloch, ou sphère de Poincaré (comme cas d'application de celle-ci), est une représentation géométrique d'un état pur d'un système quantique à deux niveaux ; c'est donc, entre autres, une représentation d'un qubit. Il est possible de généraliser la construction de cette sphère à un système à niveaux.