Intérieur (topologie)vignette|Le point x est dans l'intérieur de S car il y a une boule centrée en x entièrement incluse dans S. Le point y n'est pas dans l'intérieur de S. En mathématiques, l'intérieur (abrégé en int) est une notion de topologie appliquée à une partie d'un espace topologique. Soit X un espace topologique et A une partie de X. On appelle intérieur de A le plus grand ouvert de X inclus dans A. Il existe : c'est la réunion de tous les ouverts inclus dans A.
Espace métrisableIn topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space is said to be metrizable if there is a metric such that the topology induced by is Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable. Metrizable spaces inherit all topological properties from metric spaces. For example, they are Hausdorff paracompact spaces (and hence normal and Tychonoff) and first-countable.
Plan de Sorgenfreyvignette|Plan de Sorgenfrey avec l’antidiagonale comme sous-espace. En mathématiques, le plan de Sorgenfrey est un espace topologique souvent utilisé, à plusieurs titres, comme contre-exemple. C'est le produit S×S de la droite de Sorgenfrey S par elle-même. Robert Sorgenfrey a démontré que le plan S×S est non normal (donc non paracompact), tandis que la droite S est paracompacte (donc normale).
Espace localement compactEn topologie, un espace localement compact est un espace séparé qui admet des voisinages compacts pour tous ses points. Un tel espace n'est pas nécessairement compact lui-même mais on peut y généraliser (au moins partiellement) beaucoup de résultats sur les espaces compacts. Ce sont aussi les espaces qu'on peut « rendre » compacts avec un point grâce à la compactification d'Alexandrov. La compacité est une source très fertile de résultats en topologie mais elle reste une propriété très contraignante.
Topologie de l'ordreEn mathématiques, la topologie de l'ordre est une topologie naturelle définie sur tout ensemble ordonné (E, ≤), et qui dépend de la relation d'ordre ≤. Lorsque l'on définit la topologie usuelle de la droite numérique R, deux approches équivalentes sont possibles. On peut se fonder sur la relation d'ordre dans R, ou sur la valeur absolue de la distance entre deux nombres. Les égalités ci-dessous permettent de passer de l'une à l'autre : La valeur absolue se généralise en la notion de distance, qui induit le concept de topologie d'un espace métrique.
Ensemble de CantorEn mathématiques, l'ensemble de Cantor (ou ensemble triadique de Cantor, ou poussière de Cantor), est un sous-ensemble remarquable de la droite réelle construit par le mathématicien allemand Georg Cantor. Il s'agit d'un sous-ensemble fermé de l'intervalle unité [0, 1], d'intérieur vide. Il sert d'exemple pour montrer qu'il existe des ensembles infinis non dénombrables mais négligeables au sens de la mesure de Lebesgue. C'est aussi le premier exemple de fractale (bien que le terme ne soit apparu qu'un siècle plus tard), et il possède une dimension non entière.
Espace à bases dénombrables de voisinagesEn mathématiques, un espace topologique X est à bases dénombrables de voisinages si tout point x de X possède une base de voisinages dénombrable, c'est-à-dire s'il existe une suite V, V, V, ... de voisinages de x telle que tout voisinage de x contienne l'un des V. Cette notion a été introduite en 1914 par Felix Hausdorff. Tout espace métrique (donc aussi tout espace métrisable) est à bases dénombrables de voisinages (prendre par exemple V = une boule (ouverte ou fermée) de centre x et de rayon 2).
Axiom of countabilityIn mathematics, an axiom of countability is a property of certain mathematical objects that asserts the existence of a countable set with certain properties. Without such an axiom, such a set might not provably exist.
Espace σ-compactEn mathématiques, un espace topologique est dit σ-compact (ou localement compact dénombrable à l'infini) s'il est l'union dénombrable de sous-espaces compacts. Un espace est dit σ-localement compact s'il est à la fois σ-compact et localement compact. Tout espace compact est σ-compact, et tout espace σ-compact est de Lindelöf (c'est-à-dire que tout recouvrement ouvert a un sous-recouvrement dénombrable).
Axiome de séparation (topologie)En topologie, un axiome de séparation est une propriété satisfaite par certains espaces topologiques, similaire à la propriété de séparation de Hausdorff (dite aussi T2), et concernant la séparation de points ou de fermés, du point de vue soit de voisinages, soit de fonctions continues réelles. Divers axiomes de séparation peuvent être ordonnés par implication, notamment ceux de la série des axiomes codés par la lettre « T » et un indice numérique, ces axiomes étant en général d'autant plus restrictifs que les indices sont élevés et les topologies correspondantes plus fines.