Résumé
Le théorème de l'espérance totale est une proposition de la théorie des probabilités affirmant que l'espérance de l'espérance conditionnelle de X sachant Y est la même que l'espérance de X. Précisément, si X est une variable aléatoire intégrable (c'est-à-dire, une variable aléatoire avec E( | X | ) < ), Y est une variable aléatoire quelconque (donc pas nécessairement intégrable), Et X et Y sont définies sur le même espace probabilisé, on a alors le résultat suivant : L'espérance conditionnelle E( X | Y ) est elle-même une variable aléatoire, dont la valeur dépend de la valeur de Y. À noter que l'espérance conditionnelle de X sachant l'événement [Y = y] est une fonction de y. Si on note E( X | Y = y) = g(y), alors la variable aléatoire E( X | Y ) est tout simplement g(Y). Un cas particulier de ce résultat est que, si les événements forment une partition (c'est-à-dire que ces événements sont deux à deux disjoints et que leur union forme l'univers), alors on a : Supposons que deux usines fabriquent des ampoules électriques. Les ampoules de l'usine X ont une durée de vie de 5000 heures, alors que ceux de l'usine Y fonctionnent en moyenne pendant 4000 heures. On dit que l'usine X fournit 60 % de toutes les ampoules disponibles. Combien de temps peut-on espérer qu'une ampoule achetée durera ? En utilisant le théorème de l'espérance totale, on a : où est la durée de vie espérée de l'ampoule; est la probabilité pour que l'ampoule achetée ait été fabriquée par l'usine X; est la probabilité pour que l'ampoule achetée ait été fabriquée par l'usine Y; est la durée de vie espérée d'une ampoule fabriquée par l'usine X; est la durée de vie espérée d'une ampoule fabriquée par l'usine Y. Ainsi, chaque ampoule achetée a une durée de vie espérée de 4600 heures, c'est-à-dire qu'on peut s'attendre "en moyenne" à ce qu'elle fonctionne 4600 heures. Plus formellement, l'énoncé dans le cas général fait appel à un espace probabilisé sur lequel deux sous -tribus sont définies.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (12)
COM-417: Advanced probability and applications
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
FIN-403: Econometrics
The course covers basic econometric models and methods that are routinely applied to obtain inference results in economic and financial applications.
MATH-342: Time series
A first course in statistical time series analysis and applications.
Afficher plus
Publications associées (28)
Concepts associés (4)
Law of total cumulance
In probability theory and mathematical statistics, the law of total cumulance is a generalization to cumulants of the law of total probability, the law of total expectation, and the law of total variance. It has applications in the analysis of time series. It was introduced by David Brillinger. It is most transparent when stated in its most general form, for joint cumulants, rather than for cumulants of a specified order for just one random variable. In general, we have where κ(X1, ...
Théorème de la variance totale
En théorie des probabilités, le théorème de la variance totale ou formule de décomposition de la variance, aussi connu sous le nom de Loi d'Eve, stipule que si X et Y sont deux variables aléatoires sur un même espace de probabilité, et si la variance de Y est finie, alors Certains auteurs appellent cette relation formule de variance conditionnelle. Dans un langage peut-être mieux connu des statisticiens que des spécialistes en probabilité, les deux termes sont respectivement les composantes "non-expliquée" et "expliquée" de la variance (cf.
Espérance conditionnelle
En théorie des probabilités, l'espérance conditionnelle d'une variable aléatoire réelle donne la valeur moyenne de cette variable quand un certain événement est réalisé. Selon les cas, c'est un nombre ou alors une nouvelle variable aléatoire. On parle alors d'espérance d'une variable aléatoire conditionnée par un événement B est, intuitivement, la moyenne que l'on obtient si on renouvelle un grand nombre de fois l'expérience liée à la variable aléatoire et que l'on ne retient que les cas où l'événement B est réalisé.
Afficher plus