Présente les espaces fonctionnels et les espaces de Hilbert, en discutant des espaces de produits intérieurs et de l'importance de l'exhaustivité dans les espaces de Hilbert.
Explore la polyconvexité dans le calcul vectoriel avec des ensembles bornés ouverts et des limites de Lipschitz, des théorèmes de continuité faibles et une minimisation de l'espace de fonctions.
Explore la généralisation et la structure des groupes homotopiques supérieurs, y compris leur abéliosité, leur contexte historique et leurs propriétés des espaces H.