OctonionEn mathématiques, les octonions ou octaves sont une extension non associative des quaternions. Ils forment une algèbre à huit dimensions sur le corps R des nombres réels. L’algèbre des octonions est généralement notée O. En perdant l’importante propriété d’associativité, les octonions ont reçu moins d’attention que les quaternions. Malgré cela, ils gardent leur importance en algèbre et en géométrie, notamment parmi les groupes de Lie. Les octonions ont été découverts en 1843 par , un ami de William Hamilton, qui les appela octaves.
Non-associative algebraA non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation.
Associativité des puissancesEn algèbre, l'associativité des puissances est une forme affaiblie de l'associativité. Un magma est dit associatif des puissances si le sous-magma engendré par n'importe quel élément est associatif. Concrètement, cela signifie que si une opération est effectuée plusieurs fois sur un même élément , l'ordre dans lequel sont effectuées ces opérations n'a pas d'importance ; ainsi, par exemple, . Tout magma associatif est évidemment associatif des puissances.
Algèbre sur un corpsEn mathématiques, et plus précisément en algèbre générale, une algèbre sur un corps commutatif K, ou simplement une K-algèbre, est une structure algébrique (A, +, ·, ×) telle que : (A, +, ·) est un espace vectoriel sur K ; la loi × est définie de A × A dans A (loi de composition interne) ; la loi × est bilinéaire.
Algèbre flexibleEn mathématiques, en particulier en algèbre, une opération binaire • sur un ensemble est dite flexible si l'identité flexible est satisfaite : pour tous a et b dans l'ensemble. Un magma (c'est-à-dire un ensemble muni d'une opération binaire) est flexible si l'opération binaire dont il est muni est flexible. De même, une algèbre non associative est flexible si son produit est flexible.
SédénionEn mathématiques, les sédénions forment une algèbre réelle de dimension 16, notée . Leur nom provient du latin sedecim qui veut dire seize. Deux sortes sont actuellement connues : les sédénions obtenus par application de la construction de Cayley-Dickson ; les sédénions coniques (ou algèbre M). À l'instar des octonions, la multiplication des sedénions n'est ni commutative ni associative. De plus, par rapport aux octonions, les sédénions perdent la propriété d'être alternatifs.
Anneau (mathématiques)vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.
Algèbre à divisionEn mathématiques, et plus précisément en algèbre, une algèbre à division est une algèbre sur un corps avec la possibilité de diviser par un élément non nul (à droite et à gauche). Toutefois, dans une algèbre à division, la multiplication peut ne pas être commutative, ni même associative. Un anneau à division ou corps gauche, comme celui-des quaternions, est une algèbre associative à division sur son centre, ou sur un sous-corps de celui-ci. Soit A un anneau unitaire. L'élément 0 n'est pas inversible, sauf si A est nul.