Propriété de prolongement des homotopiesEn mathématiques, et plus précisément en topologie algébrique, la propriété de prolongement des homotopies (ou d'extension des homotopies) indique quelles homotopies définies sur un sous-espace peuvent être étendues à une homotopie définie sur un espace plus grand. La propriété d'extension des homotopies des cofibrations est le dual de la propriété de relèvement des homotopies qui est utilisée pour définir les fibrations. Soit un espace topologique, et soit .
Cône d'une applicationEn mathématiques et plus précisément en théorie de l'homotopie, le cône d'une application est un espace topologique construit à partir du cône ayant pour base l'espace de départ de l'application, en identifiant les points de cette base avec ceux de l'espace d'arrivée au moyen de l'application. Soit X et Y deux espaces topologiques et f : X → Y une application continue. Le cône de l'application f ou cofibre homotopique de f, noté C, est l'espace topologique , c'est-à-dire en quotientant la réunion disjointe CX⊔Y par l'identification de chaque élément x de X ⊂ CX avec son image f(x) dans Y.
Homotopy categoryIn mathematics, the homotopy category is a built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra.
Section d'un fibréEn topologie, une section d'un fibré sur un espace topologique est une fonction continue telle que pour tout point de . Toute section est injective. Une section est une généralisation de la notion de graphe d'une fonction. Le graphe d'une fonction g : X → Y peut être identifié à une fonction prenant ses valeurs dans le produit cartésien E = X×Y de X et Y: Une section est une caractérisation abstraite de ce qu'est un graphe. Soit π : E → X la projection sur le premier facteur du produit cartésien: π(x,y) = x.