Concepts associés (11)
Méthode de rejet
La méthode du rejet est une méthode utilisée dans le domaine des probabilités. La méthode de rejet est utilisée pour engendrer indirectement une variable aléatoire , de densité de probabilité lorsqu'on ne sait pas simuler directement la loi de densité de probabilité (c'est le cas par exemple si n'est pas une densité classique, mais aussi pour la loi de Gauss). Soit un couple de variables aléatoires indépendantes tirées selon une loi uniforme, i.e. est un point tiré uniformément dans le carré unité.
Échantillonnage de Gibbs
L' est une méthode MCMC. Étant donné une distribution de probabilité sur un univers , cet algorithme définit une chaîne de Markov dont la distribution stationnaire est . Il permet ainsi de tirer aléatoirement un élément de selon la loi (on parle d'échantillonnage). Comme pour toutes les méthodes de Monte-Carlo à chaîne de Markov, on se place dans un espace vectoriel Ɛ de dimension finie n ; on veut générer aléatoirement N vecteurs x(i) suivant une distribution de probabilité π ; pour simplifier le problème, on détermine une distribution qx(i) permettant de générer aléatoirement x(i + 1) à partir de x(i).
Categorical distribution
In probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution) is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified. There is no innate underlying ordering of these outcomes, but numerical labels are often attached for convenience in describing the distribution, (e.g. 1 to K).
Méthode de la transformée inverse
La méthode de la transformée inverse est une méthode permettant d'échantillonner une variable aléatoire X de loi donnée à partir de l'expression de sa fonction de répartition F et d'une variable uniforme sur . Cette méthode repose sur le principe suivant, parfois connu sous le nom de théorème de la réciproque : soient F une fonction de répartition, Q la fonction quantile associée, et U une variable uniforme sur . Alors, la variable aléatoire X = Q(U) a pour fonction de répartition F.
Générateur de nombres pseudo-aléatoires
Un générateur de nombres pseudo-aléatoires, pseudorandom number generator (PRNG) en anglais, est un algorithme qui génère une séquence de nombres présentant certaines propriétés du hasard. Par exemple, les nombres sont supposés être suffisamment indépendants les uns des autres, et il est potentiellement difficile de repérer des groupes de nombres qui suivent une certaine règle (comportements de groupe). Un algorithme déterministe génère des suites de nombres qui ne peuvent pas satisfaire complètement les critères mathématiques qualifiant les suites aléatoires.
Méthode de Monte-Carlo
Une méthode de Monte-Carlo, ou méthode Monte-Carlo, est une méthode algorithmique visant à calculer une valeur numérique approchée en utilisant des procédés aléatoires, c'est-à-dire des techniques probabilistes. Les méthodes de Monte-Carlo sont particulièrement utilisées pour calculer des intégrales en dimensions plus grandes que 1 (en particulier, pour calculer des surfaces et des volumes). Elles sont également couramment utilisées en physique des particules, où des simulations probabilistes permettent d'estimer la forme d'un signal ou la sensibilité d'un détecteur.
Loi de Poisson
En théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Loi de Pareto
En théorie des probabilités, la loi de Pareto, d'après Vilfredo Pareto, est un type particulier de loi de puissance qui a des applications en sciences physiques et sociales. Elle permet notamment de donner une base théorique au « principe des 80-20 », aussi appelé principe de Pareto. Soit la variable aléatoire X qui suit une loi de Pareto de paramètres (x,k), avec k un réel positif, alors la loi est caractérisée par : Les lois de Pareto sont des lois continues.
Loi bêta
Dans la théorie des probabilités et en statistiques, la loi bêta est une famille de lois de probabilités continues, définies sur , paramétrée par deux paramètres de forme, typiquement notés (alpha) et (bêta). C'est un cas spécial de la loi de Dirichlet, avec seulement deux paramètres. Admettant une grande variété de formes, elle permet de modéliser de nombreuses distributions à support fini. Elle est par exemple utilisée dans la méthode PERT. Fixons les deux paramètres de forme α, β > 0.
Loi de Dirichlet
thumb|right|250px|Plusieurs images de la densité de la loi de Dirichlet lorsque K=3 pour différents vecteurs de paramètres α. Dans le sens horaire à partir du coin supérieur gauche : α=(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4). En probabilité et statistiques, la loi de Dirichlet, souvent notée Dir(α), est une famille de lois de probabilité continues pour des variables aléatoires multinomiales. Cette loi (ou encore distribution) est paramétrée par le vecteur α de nombres réels positifs et tire son nom de Johann Peter Gustav Lejeune Dirichlet.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.