Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les conditions KKT dans l'optimisation convexe, couvrant les cônes doubles, les propriétés, les inégalités généralisées et les conditions d'optimisation.
Explore l'optimisation robuste dans la radiothérapie et les machines vectorielles de soutien, en mettant l'accent sur les scénarios les plus défavorables et l'utilisation de règles de décision linéaires.
Explore l'optimisation convexe dans la réduction de la dimensionnalité non linéaire, en présentant des applications pratiques dans les tâches de traitement du signal et de régression.
Couvre les méthodes d'optimisation, les garanties de convergence, les compromis et les techniques de réduction de la variance en optimisation numérique.
Explore les problèmes d'optimisation convexe, les critères d'optimalité, les problèmes équivalents et les applications pratiques dans le transport et la robotique.