Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des modèles linéaires dans l'apprentissage automatique, couvrant les bases, les modèles paramétriques, la régression multi-sorties et les mesures d'évaluation.
Couvre les méthodes Monte Carlo, la réduction de la variance et le contrôle optimal stochastique, explorant les techniques de simulation, l'efficacité et la dynamique d'investissement.
Explique l'estimation par l'erreur moyenne au carré et l'information de Fisher dans le contexte des filtres adaptatifs et des distributions exponentiées.
Explique les estimateurs statistiques pour les variables aléatoires et les distributions gaussiennes, en se concentrant sur les fonctions d'erreur pour l'intégration.
Explore la prédiction linéaire, les coefficients de prédiction, la minimisation de l'erreur quadratique moyenne et l'algorithme de Levinson-Durbin dans le traitement du signal.