Fonction hypergéométriquevignette|Graphe d'une fonction hypergéométrique dans le plan complexe. En mathématiques, le terme de fonction hypergéométrique, parfois sous le nom « fonction hypergéométrique de Gauss », désigne généralement une fonction spéciale particulière, dépendant de trois paramètres a, b, c, notée F(a, b, c ; z), parfois notée sans indice quand il n'y a pas d'ambigüité, et qui s'exprime sous la forme de la série hypergéométrique (lorsque celle-ci converge).
Physique mathématiqueLa physique mathématique est un domaine de recherche commun à la physique et aux mathématiques s'intéressant au développement des méthodes mathématiques spécifiques aux problèmes physiques ou plus généralement à l'application des mathématiques à la physique, et, à l'opposé, aux développements mathématiques que suscitent certains domaines de recherche en physique. Elle inclut notamment l'étude des systèmes dynamiques, des algèbres aux symétries particulières, des méthodes de décomposition en séries et des méthodes de résolution d'équations différentielles.
Suite définie par récurrenceEn mathématiques, une suite définie par récurrence est une suite définie par son (ou ses) premier(s) terme(s) et par une relation de récurrence, qui définit chaque terme à partir du précédent ou des précédents lorsqu'ils existent. Une relation de récurrence est une équation dans laquelle l'expression de plusieurs termes de la suite apparait, par exemple : ou ou ou si l'on se place dans les suites de mots sur l'alphabet : Si la relation de récurrence a une « bonne » présentation, cela permet de calculer l'expression du terme d'indice le plus élevé en fonction de l'expression des autres.
Projectile motionProjectile motion is a form of motion experienced by an object or particle (a projectile) that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air resistance are passive and negligible. The curved path of objects in projectile motion was shown by Galileo to be a parabola, but may also be a straight line in the special case when it is thrown directly upward or downward.
Trajectoirevignette|En physique la trajectoire est une ligne décrit après le déplacement d'un mobile En mathématiques et en sciences physiques, la trajectoire est la ligne décrite par n'importe quel point d'un objet en mouvement, et notamment par son centre de gravité. En biologie et en écologie la même définition s'applique pour les êtres vivants. En sciences humaines et sociales, une trajectoire est la succession avec l’âge des passages d’un individu d’un état ou d’une position sociale à l’autre.
Fonction homogènevignette|Exemple de fonction homogène de degré 1 En mathématiques, une fonction homogène est une fonction qui a un comportement d’échelle multiplicatif par rapport à son ou ses arguments : si l'argument (vectoriel au besoin) est multiplié par un scalaire, alors le résultat sera multiplié par ce scalaire porté à une certaine puissance. Soient E et F deux espaces vectoriels sur un même corps commutatif K.
Exponentielle d'une matriceEn mathématiques, et plus particulièrement en analyse, l'exponentielle d'une matrice est une fonction généralisant la fonction exponentielle aux matrices et aux endomorphismes par le calcul fonctionnel. Elle fait en particulier le pont entre un groupe de Lie et son algèbre de Lie. Pour n = 1, on retrouve la définition de l'exponentielle complexe. Sauf indication contraire, X, Y désignent des matrices n × n complexes (à coefficients complexes).
Fonction propreEn théorie spectrale, une fonction propre f d'un opérateur linéaire sur un espace fonctionnel est un vecteur propre de l'opérateur linéaire. En d’autres termes, une fonction propre d'un opérateur linéaire, , défini sur un certain espace de fonction, est toute fonction f non identiquement nulle sur cet espace qui, lorsqu’elle se voit appliquer cet opérateur en ressort exactement pareille à elle-même, à un facteur d'échelle multiplicatif près. Cette fonction satisfait donc : pour un scalaire λ, la valeur propre associée à f.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.