Déduction logiqueLa déduction logique est un type de relation que l'on rencontre en logique mathématique. Elle relie des propositions dites prémisses à une proposition dite conclusion et préserve la vérité. Prémisses et conclusion qui sont ainsi reliées par une règle de déduction, assurent que si la règle est valide et si les prémisses sont vraies, la conclusion est elle aussi vraie. On dit alors que la conclusion est une conséquence des prémisses, ou parfois que la conclusion vient des prémisses.
Premiers AnalytiquesLes Premiers Analytiques sont un ouvrage d'Aristote et constituent le troisième livre de l’Organon et la première partie des Analytiques. Aristote y développe l'essentiel de sa logique et de la syllogistique qui constitue la naissance de la logique comme discipline formelle. Premiers analytiques, trad. Jules Barthélemy-Saint-Hilaire Premiers analytiques, trad. Jules Tricot, Vrin. Günther Patzig, Die aristotelische Syllogistik. Logisch-philologische Untersuchung über das Buch A der "Ersten Analytik", éd.
Validité (logique)En logique, la validité est la manière dont les prémisses et la conclusion concordent logiquement dans les arguments réussis. La forme d'une argumentation déductive est dite valide si et seulement si elle utilise des règles d’inférence par lesquelles il est impossible d’obtenir une conclusion fausse à partir de prémisses vraies. Un argument est valide si et seulement si la vérité de ses prémisses entraîne celle de sa conclusion. Il serait contradictoire d'affirmer les prémisses et de nier la conclusion.
Syllogisme disjonctifEn logique classique, un syllogisme disjonctif (où plus anciennement ponens modus tollendo) est une forme d'argument valide, qui prend la forme d'un syllogisme ayant une déclaration disjonctive dans l'une de ses prémisses. Soit la brèche est une brèche sécurisée, soit elle sera soumis à une amende. La brèche n'est pas une brèche de sécurité. Par conséquent, elle sera soumis à une amende. En logique propositionnelle, une syllogisme disjonctif (aussi connu sous le nom de l'argument de kneecapper, élimination ou, ou abrégé vE), est une règle d'inférence valide.
Raisonnement déductifEn logique, la déduction est une inférence menant d'une affirmation générale à une conclusion particulière. La déduction est une opération par laquelle on établit au moyen de prémisses une conclusion qui en est la conséquence nécessaire, en vertu de règles d'inférence logiques. Ces règles sont notamment l'objet des Premiers Analytiques d'Aristote. On l'oppose généralement à l'induction, qui consiste au contraire à extraire d'un nombre fini de propositions données par l'observation, une conclusion ou un petit nombre de conclusions plus générales.
SyllogismeEn logique, le syllogisme est un raisonnement logique mettant en relation au moins trois propositions : deux ou plus d'entre elles, appelées « prémisses », conduisent à une « conclusion ». Aristote a été le premier à le formaliser dans son Organon. Ces propositions sont généralement exprimées avec uniquement des prédicats unaires et relèvent donc de la logique monadique du premier ordre.
Liste de concepts logiquesCet article liste les principaux concepts logiques, au sens philosophique du terme, c'est-à-dire en logique générale (issue de la dialectique). Nota : La logique comporte aussi des branches en mathématiques et en informatique. Ces branches de la logique utilisent des concepts souvent différents comme les prédicats : axiome, théorème hypothèse, conjonction, disjonction, Déduction naturelle... Pour plus d'informations sur ces concepts consulter les articles : Logique mathématique, logique classique.
Logique informelleLa logique informelle, intuitivement, est l'étude des principes de la logique et de la pensée logique en dehors d'une théorie formelle, c'est-à-dire abstraite. Cependant, peut-être à cause de la mention du terme informelle dans le titre, la définition précise de la logique informelle est un sujet de litige. Ralph H. Johnson et J. Anthony Blair définissent la logique informelle comme « une branche de la logique dont la tâche est de développer des normes, des critères, des procédures non formels pour l'analyse, l'interprétation, l'évaluation, la critique et la construction de l'argumentation ».