Droites concourantesEn mathématiques, des droites concourantes sont des droites qui ont un point d'intersection commun, ce point étant appelé point de concours. Lorsque seules deux droites sont en jeu, le fait qu'elles soient concourantes est équivalent au fait qu'elles soient sécantes, ce qui fait que le vocable ne s'emploie pas dans ce cadre. En revanche, à partir de trois droites en présence, les deux propriétés ne sont pas équivalentes : trois droites concourantes sont nécessairement sécantes deux à deux mais l'implication réciproque est fausse.
Périmètrethumb|Le périmètre du carré vaut ici 8.|alt=Schéma d'un carré avec une longueur de deux. thumb|Selon Homère, le périmètre de Troie était de pas (photo des remparts supposés de Troie).|alt=Photo des remparts supposés de Troie. Le périmètre d'une figure plane est la longueur développée du contour de cette figure. Le calcul du périmètre sert par exemple à déterminer la quantité de grillage nécessaire à la clôture d'un terrain. Pour tout polygone, le périmètre est égal à la somme des longueurs des côtés.
Milieu d'un segmentEn géométrie affine, le milieu d'un segment est l'isobarycentre des deux extrémités du segment. Dans le cadre plus spécifique de la géométrie euclidienne, c'est aussi le point de ce segment situé à égale distance de ses extrémités. Symétrie centrale Deux points distincts A et A sont symétriques par rapport à un point O si et seulement si O est le milieu du segment [AA]. Dans la symétrie centrale de centre O, le symétrique de O est O lui-même. L'ensemble des points du plan équidistants de deux points A et B constitue la médiatrice du segment [AB].
Cercles inscrit et exinscrits d'un triangleÉtant donnés trois points non alignés A, B et C du plan, il existe quatre cercles tangents aux trois droites (AB), (AC) et (BC). Ce sont le cercle inscrit (celui qui est intérieur au triangle) et les cercles exinscrits du triangle ABC. Bissectrice Un cercle tangent aux trois droites (AB), (BC), (CA) doit posséder un centre équidistant de ces trois droites. Or l'ensemble des points équidistants de deux droites sécantes (d1) et (d2) forme deux droites perpendiculaires, constituées des quatre demi-droites bissectrices chacune d'un des quatre secteurs angulaires construits par les droites (d1) et (d2), et appelées bissectrices des droites (d1) et (d2).
Cercle circonscritEn géométrie, un cercle circonscrit à un polygone est un cercle qui passe par tous les sommets du polygone. Le polygone est alors dit inscrit dans le cercle : on parle de polygone inscriptible ou parfois de polygone cyclique. Les sommets sont alors cocycliques, c'est-à-dire situés sur un même cercle. Si le polygone n'est pas aplati, ce cercle est unique et son centre est le point de concours des médiatrices des côtés. Un polygone n'a pas nécessairement de cercle circonscrit, mais les triangles, les rectangles et les polygones réguliers sont tous inscriptibles.