Concepts associés (12)
Angles d'Euler
En mécanique et en mathématiques, les angles d'Euler sont des angles introduits par Leonhard Euler (1707-1783) pour décrire l'orientation d'un solide ou celle d'un référentiel par rapport à un trièdre cartésien de référence. Au nombre de trois, ils sont appelés angle de précession, de nutation et de rotation propre, les deux premiers pouvant être vus comme une généralisation des deux angles des coordonnées sphériques. Le mouvement d'un solide par rapport à un référentiel (un avion dans l'air, un sous-marin dans l'eau, des skis sur une pente.
Contrôle d'attitude
Le contrôle d'attitude est le processus qui permet de contrôler l'attitude (c'est-à-dire l'orientation dans l'espace) d'un engin aérospatial : aéronef, missile ou véhicule spatial tels qu'un satellite artificiel, une sonde spatiale, une station spatiale ou un lanceur - de manière que cet engin puisse remplir ses objectifs. Un engin aérospatial, même placé dans l'espace, subit des forces qui modifient plus ou moins rapidement son orientation.
Rotation formalisms in three dimensions
In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.
Navigation inertielle
vignette|295x295px|Centrale à inertie du missile S3, Musée de l'Air et de l'Espace, Paris Le Bourget (France) La navigation inertielle (en anglais, inertial navigation system ou INS) est une technique utilisant des capteurs d’accélération et de rotation afin de déterminer le mouvement absolu d’un véhicule (avion, missile, sous-marin...). Elle a l’avantage d’être totalement autonome. La navigation inertielle a été utilisée sur les V1 et V2 allemands. Charles Stark Draper est connu comme le « père de la navigation inertielle ».
Matrice de rotation
En mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.
Quaternions et rotation dans l'espace
Les quaternions unitaires fournissent une notation mathématique commode pour représenter l'orientation et la rotation d'objets en trois dimensions. Comparés aux angles d'Euler, ils sont plus simples à composer et évitent le problème du blocage de cardan. Comparés aux matrices de rotations, ils sont plus stables numériquement et peuvent se révéler plus efficaces. Les quaternions ont été adoptés dans des applications en infographie, robotique, navigation, dynamique moléculaire et en mécanique spatiale des satellites.
Rotation (physique)
En cinématique, l'étude des corps en rotation est une branche fondamentale de la physique du solide et particulièrement de la dynamique, y compris de la dynamique des fluides, qui complète celle du mouvement de translation. L'analyse du mouvement de rotation se prolonge y compris aux échelles atomiques, avec la dynamique moléculaire et l'étude de la fonction d'onde en mécanique quantique.
Revêtement (mathématiques)
En mathématiques, et plus particulièrement en topologie et en topologie algébrique, un revêtement d'un espace topologique B par un espace topologique E est une application continue et surjective p : E → B telle que tout point de B appartienne à un ouvert U tel que l' de U par p soit une union disjointe d'ouverts de E, chacun homéomorphe à U par p. Il s'agit donc d'un fibré à fibres discrètes. Les revêtements jouent un rôle pour calculer le groupe fondamental et les groupes d'homotopie d'un espace.
Gyroscope
Un gyroscope (du grec « qui observe la rotation ») est un appareil constitué d'un disque dont l'axe de rotation est libre de prendre toutes les orientations possibles grâce à un système de cardans. Cet appareil exploite le principe de la conservation du moment cinétique en physique (ou encore stabilité gyroscopique ou effet gyroscopique). Cette loi fondamentale de la mécanique veut qu'en l'absence de couple appliqué à un solide en rotation autour d'un de ses axes principaux, celui-ci conserve son axe de rotation invariable.
Translation
En géométrie, une translation est une transformation géométrique qui correspond à l'idée intuitive de « glissement » d'un objet, sans rotation, retournement ni déformation de cet objet. En géométrie classique, la notion de translation est très fortement liée à celle de vecteur, qu'elle suit ou précède. Ainsi trouve-t-on la translation de vecteur définie comme une transformation qui, à tout point M, associe le point M' tel que : On dit alors que M’ est le translaté de M. C'est l'image de M par cette translation.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.