Polygone dualEn géométrie, les polygones peuvent être associés par paires de duaux, où les sommets de l'un correspondent aux côtés de l'autre. vignette|upright=1.5|La construction « de Dorman Luke » du dual d'un polyèdre, montrant une face rhombique duale à une face rectangulaire. Les polygones réguliers sont autoduaux, c'est-à-dire qu'ils sont leur propre polygone dual. Le dual d'un polygone isogonal est un polygone isotoxal. Par exemple, le rectangle (isogonal) et le losange (isotoxal) sont duaux.
Quadrilatère circonscriptiblevignette|300x300px| Un quadrilatère circonscriptible avec son cercle inscrit En géométrie euclidienne, un quadrilatère circonscriptible (ou quadrilatère tangentiel) est un quadrilatère convexe pour lequel il existe un cercle inscrit, c'est-à-dire un cercle situé à l'intérieur du quadrilatère et tangent à chacun de ses quatre côtés. On dit alors que le quadrilatère circonscrit son cercle inscrit. Un quadrilatère circonscriptible est un cas particulier de polygone circonscriptible.
PentagoneEn géométrie, un pentagone est un polygone à cinq sommets, donc cinq côtés et cinq diagonales. Un pentagone est soit simple (convexe ou concave), soit croisé. Le pentagone régulier étoilé est le pentagramme. Le terme « pentagone » dérive du latin pentagonum de même sens, substantivation de l'adjectif pentagonus, lui-même emprunté au grec ancien, πεντάγωνος (pentágônos), « pentagonal », « qui a cinq angles, cinq côtés ». Le terme grec est lui-même construit à partir de πέντε (pénte), « cinq », et γωνία (gônía), « angle ».
Droites concourantesEn mathématiques, des droites concourantes sont des droites qui ont un point d'intersection commun, ce point étant appelé point de concours. Lorsque seules deux droites sont en jeu, le fait qu'elles soient concourantes est équivalent au fait qu'elles soient sécantes, ce qui fait que le vocable ne s'emploie pas dans ce cadre. En revanche, à partir de trois droites en présence, les deux propriétés ne sont pas équivalentes : trois droites concourantes sont nécessairement sécantes deux à deux mais l'implication réciproque est fausse.
LosangeUn losange est un quadrilatère dont les côtés ont tous la même longueur, ou encore un parallélogramme ayant au moins deux côtés consécutifs de même longueur. Il était anciennement appelé rhombe du grec ρόμβος (et porte toujours un nom tiré de cette étymologie dans de nombreuses langues, comme rhombus en anglais ou encore rombo en espagnol et en italien). L'adjectif qui lui est relatif est rhombique.
Cercle circonscritEn géométrie, un cercle circonscrit à un polygone est un cercle qui passe par tous les sommets du polygone. Le polygone est alors dit inscrit dans le cercle : on parle de polygone inscriptible ou parfois de polygone cyclique. Les sommets sont alors cocycliques, c'est-à-dire situés sur un même cercle. Si le polygone n'est pas aplati, ce cercle est unique et son centre est le point de concours des médiatrices des côtés. Un polygone n'a pas nécessairement de cercle circonscrit, mais les triangles, les rectangles et les polygones réguliers sont tous inscriptibles.
Inscribed figureIn geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figure G" means precisely the same thing as "figure G is circumscribed about figure F". A circle or ellipse inscribed in a convex polygon (or a sphere or ellipsoid inscribed in a convex polyhedron) is tangent to every side or face of the outer figure (but see Inscribed sphere for semantic variants).
Diagonalevignette|Le segment [D'B'] est une diagonale du carré A'B'C'D'.[D'B'] et [A'C] sont tous deux des diagonales du cube ci-dessus. On appelle diagonale d'un polygone tout segment reliant deux sommets non consécutifs (non reliés par un côté). Un polygone à n côtés possède donc diagonales. Un quadrilatère est un parallélogramme si, et seulement si, ses diagonales se croisent en leur milieu. On appelle diagonale de l'espace une diagonale d'un polytope, diagonale de l'espace principale une diagonale principale d'un polytope, diagonale de l'espace brisée une diagonale brisée d'un hypercube.
Centre (géométrie)En géométrie, la notion de centre (du grec κέντρον) d'un objet ou d'une figure généralise celle de milieu d'un segment, de centre d'un cercle ou d'une sphère. Le centre d'un cercle (ou d'une sphère) étant à la fois son centre de symétrie, son centre de rotation, son centre de gravité, et le point équidistant de chacun de ses points, ces diverses caractérisations permettent d'étendre la notion de centre à de larges familles d'objets. vignette|Objets à symétrie centrale.
BisectionIn geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a 'bisector'. The most often considered types of bisectors are the 'segment bisector' (a line that passes through the midpoint of a given segment) and the 'angle bisector' (a line that passes through the apex of an angle, that divides it into two equal angles). In three-dimensional space, bisection is usually done by a bisecting plane, also called the 'bisector'.