Dernier théorème de FermatEn mathématiques, et plus précisément en théorie des nombres, le dernier théorème de Fermat, ou grand théorème de Fermat, ou depuis sa démonstration théorème de Fermat-Wiles, s'énonce comme suit : Énoncé par Pierre de Fermat d'une manière similaire dans une note marginale de son exemplaire d'un livre de Diophante, il a cependant attendu plus de trois siècles une preuve publiée et validée, établie par le mathématicien britannique Andrew Wiles en 1994.
Pierre de FermatPierre de Fermat, né dans la première décennie du , à Beaumont-de-Lomagne (département actuel de Tarn-et-Garonne), près de Montauban, et mort le à Castres (département actuel du Tarn), est un magistrat, polymathe et surtout mathématicien français, surnommé « le prince des amateurs ». Il est aussi poète, habile latiniste et helléniste, et s'est intéressé aux sciences et en particulier à la physique ; on lui doit notamment le principe de Fermat en optique.
Point rationnelEn théorie des nombres et géométrie algébrique, les points rationnels d'une variété algébrique définie sur un corps sont, lorsque X est définie par un système d'équations polynomiales, les solutions dans k de ce système. Soit une variété algébrique définie sur un corps . Un point est appelé un point rationnel si le corps résiduel de X en x est égal à . Cela revient à dire que les coordonnées du point dans une carte locale affine appartiennent toutes à .
Théorème des deux carrés de Fermatthumb|Pierre de Fermat (1601-1665). En mathématiques, le théorème des deux carrés de Fermat énonce les conditions pour qu’un nombre entier soit la somme de deux carrés parfaits (c'est-à-dire de deux carrés d’entiers) et précise de combien de façons différentes il peut l’être. Par exemple, selon ce théorème, un nombre premier impair (c'est-à-dire tous les nombres premiers sauf 2) est une somme de deux carrés parfaits si et seulement si le reste de sa division euclidienne par 4 est 1 ; dans ce cas, les carrés sont déterminés de manière unique.
Height functionA height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers. For instance, the classical or naive height over the rational numbers is typically defined to be the maximum of the numerators and denominators of the coordinates (e.g.
Lemme d'Euclidevignette|Le lemme d'Euclide est tiré des Éléments, ouvrage fondateur des mathématiques occidentales. En mathématiques, le lemme d'Euclide est un résultat d'arithmétique élémentaire sur la divisibilité qui correspond à la Proposition 32 du Livre VII des Éléments d'Euclide. Il s'énonce ainsi : Une généralisation est : Formellement : si a|bc et PGCD(a, b) = 1, alors a|c. Dans le traité de Gauss, les Disquisitiones arithmeticae, l'énoncé du lemme d'Euclide constitue la proposition 14 (section 2), qu'il utilise pour prouver l'unicité de la décomposition en produit de facteurs premiers d'un entier (théorème 16), admettant l'existence comme .
Triplet pythagoricienvignette|Animation illustrant le plus simple triplet pythagoricien : 32 + 42 = 52. En arithmétique, un triplet pythagoricien ou triplet de Pythagore est un triplet (a, b, c) d'entiers naturels non nuls vérifiant la relation de Pythagore : . Le triplet pythagoricien le plus connu est (3, 4, 5). À tout triplet pythagoricien est associé un triangle de côtés entiers a, b, c, forcément rectangle d’hypoténuse c, ainsi qu'un rectangle de côtés entiers a, b, et de diagonale entière c.
André WeilAndré Weil, né le à Paris et mort à Princeton (New Jersey, États-Unis) le , est une des grandes figures parmi les mathématiciens du . Connu pour son travail fondamental en théorie des nombres et en géométrie algébrique, il est un des membres fondateurs du groupe Bourbaki. Il est le frère de la philosophe Simone Weil et père de l'écrivaine Sylvie Weil. vignette|gauche|La famille Weil en 1916. André Weil est le fils aîné d'une famille bourgeoise, unie, raisonnablement aisée et agnostique, d'origine juive alsacienne du côté de son père Bernard et juive russe du côté de sa mère Selma Reinherz.
Raisonnement par récurrencevignette|Le raisonnement par récurrence est comme une suite de dominos. Si la propriété est vraie au rang n0 (i. e. le premier domino de numéro 0 tombe) et si sa véracité au rang n implique celle au rang n + 1 (i. e. la chute du domino numéro n fait tomber le domino numéro n + 1) alors la propriété est vraie pour tout entier (i. e. tous les dominos tombent). En mathématiques, le raisonnement par récurrence (ou par induction, ou induction complète) est une forme de raisonnement visant à démontrer une propriété portant sur tous les entiers naturels.
Équation de Fermat généraliséeEn arithmétique, l'équation de Fermat généralisée est l'équationoù sont des entiers non nuls, sont des entiers non nuls premiers entre eux et sont entiers. Comme son nom le laisse transparaître, cette équation généralise l'équation dont le fameux dernier théorème de Fermat établit l'impossibilité quand . À l'instar de celui-ci avant sa résolution, son principal intérêt réside aujourd'hui dans la stimulation du développement des nouveaux outils mathématiques nécessaires à son appréhension.